Lecture Objectives: Finish wit introduction of HVAC Systems Introduce major ES software.

Slides:



Advertisements
Similar presentations
Energy Calculations Dr. Sam C M Hui
Advertisements

Announcement Course Exam October 6 th (Thursday) In class: 90 minutes long Examples are posted on the course website.
Lecture Objectives: Model processes in AHU –Use eQUEST predefined models –Use detail modeling Define your topics for your final project.
Energy use in buildings Dr. Atila Novoselac Associate Professor Department of Civil, Architectural and Environmental Engineering, ECJ
Lecture Objectives: Model HVAC Systems –HW3 Asignemnet Learn about eQUEST software –How to conduct parametric analysis of building envelope.
Lecture Objectives: Final discussion about HW3 Introduce more final project topics Continue with HVAC Systems.
Lecture Objectives: Model processes in AHU –Use eQUEST predefined models –Use detail modeling Define your topics for your final project.
Equation solvers Matlab Free versions / open source codes: –Scilab MathCad: Mathematica:
Tutorial 5: Numerical methods - buildings Q1. Identify three principal differences between a response function method and a numerical method when both.
Lecture Objectives: Finish with HVAC Systems Discuss Final Project.
Objectives Talk about grades Talk about project and field trip Review important lectures.
Lecture Objectives: Specify Exam Time Finish with HVAC systems –HW3 Introduce Projects 1 & 2 –eQUEST –other options.
Lecture Objectives: Summarize sorption chillers Learn about Chiller modeling Cooling towers and modeling.
Lecture Objectives: Analyze the unsteady-state heat transfer Conduction Introduce numerical calculation methods Explicit – Implicit methods.
Lecture Objectives: Finish with software intro HVAC Systems
Lecture Objectives: Learn about Chiller modeling
Lecture Objectives: -Discuss the final project presentations -Energy simulation result evaluation -Review the course topics.
Lecture Objectives: Discuss –solar radiation and heat transfer through windows –Internal heat loads Introduce Homework Assignment 1b –solve 1/3 of the.
Project group members and presentation time Thursday Chris Holcomb Cristian Wolleter Michelle Noriega Mei Baumann, Zahid Alibhai, Ellie Azolaty Randy Maddox.
Lecture Objectives: Clarify issues related to eQUEST –for midterm project Learn more about various HVAC - economizer - heat recovery Discuss about the.
Lecture Objectives: Discuss Project 1 and Final Project Learn about Photo Voltaic systems –Discuss HW3 Discuss system of equations solvers - learn what.
Lecture Objectives: Discuss the HW1b solution Learn about the connection of building physics with HVAC Solve part of the homework problem –Introduce Mat.
Lecture Objectives: Discuss exam questions
Lecture Objectives: -Define the midterm project -Lean about eQUEST -Review exam problems.
Announcement Course Exam November 3rd In class: 90 minutes long Examples will be posted on the course website.
Lecture Objectives: Finish with system of equation for
the compact air control solution
Lecture Objectives: Continue with linearization of radiation and convection Example problem Modeling steps.
Announcement Course Exam November 3rd In class: 90 minutes long Examples will be posted on the course website.
Development of a new Building Energy Model in TEB Bruno Bueno Grégoire Pigeon.
EnergyPlus applied to urban climate studies
Lecture Objectives: Discuss the exam problems Answer question about HW 3 and Final Project Assignments Building-System-Plant connection –HVAC Systems.
Lecture Objectives: Differences in Conduction Calculation in Various Energy Simulation Programs Modeling of HVAC Systems.
Lecture Objectives: Define the final project Deliverables and Grading policy Analyze factors that influence accuracy of our modeling study Learn about.
Announcement Course Exam: Next class: November 3rd In class: 90 minutes long Examples are posted on the course website.
Final Project Format and Deliverables Examples
Lecture Objectives: Analyze several modeling problems –Examples from the final project list Economizer Solar collectors Phase change thermal storage materials.
Final Project I need your proposal about the final project! It should include –Title –Group members –Objective –Short description –Methodology –Expected.
Lecture Objectives: -Discuss about the final project and presentation -Introduce advance simulation tools -Review the course topics.
Equation solvers Scilab Matlab
Lecture Objectives: Answer question related to HW 4 Learn about Life Cycle Cost Analysis (LLC) tools in eQUEST Learn about specifics related to modeling.
Lecture Objectives: Accuracy of the Modeling Software.
Lecture Objectives: Review Psychrometrics Introduce Air Handling Unit
Lecture Objectives: Learn about detailed vs. empirical modeling Discuss accuracy of energy modeling Introduce life-cycle cost analysis –integrated in eQUEST.
Lecture Objectives: Learn about Plumbing System Modeling
Lecture Objectives: Discuss HW3 parts d) & e) Learn about HVAC systems
Final project presentations
Lecture Objectives: Discuss Final Project
Objectives Finish analysis of most common HVAC Systems
Lecture Objectives: Discuss HW4, answer your questions
We need to decide about the time for the final project presentation
Lecture Announcement Developing Concrete with a Structural and Thermal Insulation Performance and Homogenous and Stratified Approach Dr. Mauricio Lopez.
Lecture Objectives: Discuss exam questions
Lecture Objectives: Discuss Project 1 assignment
Lecture Objectives: Answer questions related to HW 4
Lecture Objectives: Continue with cooling towers
Lecture Objectives: Finish with HVAC systems
Lecture Objectives: Discuss accuracy of energy simulation and Introduce advance simulation tools Review the course topics Do the Course and Instructor.
Lecture Objectives: Discuss HW3 parts d) & e) Learn about HVAC systems
Lecture Objectives: Answer questions related to HW 4
Objectives Discuss Project 1 (eQUEST) Learn about HVAC Systems
October 31st In class test!
Lecture Objectives: Discuss HW4 Chiller modeling
Lecture Objectives: Discuss HW4 parts
Lecture Objectives: Discuss Projects 1 and 2
When: Monday 26, 4 pm Where: ECJ Building, Classroom 3.402
Lecture Objectives: Review linearization of nonlinear equation for unsteady state problems Learn about whole building modeling equations.
Make up: Project presentation class at the end of the semester
Lecture Objectives: Finish with major ES software Introduce HW 4.
Announcements Exam 1 Next Class (Thursday, March 14th):
Presentation transcript:

Lecture Objectives: Finish wit introduction of HVAC Systems Introduce major ES software

Integration of HVAC and building physics models Building Heating/Cooling System Plant Building Heating/Cooling System Plant Load System Plant model Integrated models Q buiolding Q including Ventilation and Dehumidification

Example of System Models: Schematic of simple air handling unit (AHU) m - mass flow rate [kg/s], T – temperature [C], w [kg moist /kg dry air ], r - recirculation rate [-], Q energy/time [W] Mixing box

Energy and mass balance equations for Air handling unit model – steady state case m S is the supply air mass flow rate c p - specific capacity for air, T R is the room temperature, T S is the supply air temperature. w R and w S are room and supply humidity ratio - energy for phase change of water into vapor The energy balance for the room is given as: The air-humidity balance for room is given as: The energy balance for the mixing box is: ‘r’ is the re-circulated air portion, T O is the outdoor air temperature, T M is the temperature of the air after the mixing box. The air-humidity balance for the mixing box is: w O is the outdoor air humidity ratio and w M is the humidity ratio after the mixing box The energy balance for the heating coil is given as: The energy balance for the cooling coil is given as:

Non-air system Radiant panel heat transfer model

The total cooling/heating load in the room The energy extracted/added by air system The energy extracted/added by the radiant panel: T he radiant panel energy is: The energy extracted/added by the radiant panel is the sum of the radiative and convective parts:

T OA water Building users (cooling coil in AHU) T CWR = 11 o C T CWS =5 o C Evaporation at 1 o C T Condensation = T OA + ΔT What is COP for this air cooled chiller ? COP is changing with the change of T OA Example of Plant Models: Chiller P electric (  ) = COP (  ) x Q cooling coil (  )

Chiller model: COP= f(T OA, Q cooling, chiller properties) Chiller data: Q NOMINAL nominal cooling power, P NOMINAL electric consumption for Q NOMINAL Cooling water supplyOutdoor air Full load efficiency as function of condenser and evaporator temperature Efficiency as function of percentage of load Percentage of load: The coefficient of performance under any condition: The consumed electric power [KW] under any condition Available capacity as function of evaporator and condenser temperature

Energy Simulation (ES) Programs

Structure of ES programs Solver Interface for input data Graphical User Interface (GUI) Interface for result presentation Preprocessor Engine Preprocessor ASCI file ASCI file

Modeling steps Define the domain Analyze the most important phenomena and define the most important elements Discretize the elements and define the connection Write energy and mass balance equations Solve the equations Present the result ES program Preprocessor Solver Postprocessor

Characteristic parameters Conduction (and accumulation) solution method – finite dif (explicit, implicit), response functions Time steps Meteorological data Radiation and convection models (extern. & intern.) Windows and shading Infiltration models Conduction to the ground HVAC and control models

ES programs Large variety DOE2 eQUEST (DOE2) BLAST ESPr TRNSYS EnergyPlus (DOE2 & BLAST)

eQUEST (DOE2) US Department of Energy & California utility customers eQUEST - interface for the DOE-2 solver DOE-2 - one of the most widely used ES program - recognized as the industry standard eQUEST very user friendly interface Good for life-cycle cost and parametric analyses Not very large capabilities for modeling of different HVAC systems Many simplified models Certain limitations related to research application - no capabilities for detailed modeling

ESPr University of Strathclyde - Glasgow, Scotland, UK Detailed models – Research program Use finite difference method for conduction Simulate actual physical systems Enable integrated performance assessments Includes daylight utilization, natural ventilation, airflow modeling CFD, various HVAC and control models Detail model – require highly educated users Primarily for use with UNIX operating systems

TRNSYS Solar Energy Lab - University of Wisconsin Modular system approach One of the most flexible tools available A library of components Various building models including HVAC Specialized for renewable energy and emerging technologies User must provide detailed information about the building and systems Not free

EnergyPlus U S Department of Energy Newest generation building energy simulation program ( BLAST + DOE-2) Accurate and detailed Complex modeling capabilities Large variety of HVAC models Some integration wit the airflow programs Zonal models and CFD Detail model – require highly educated users Very modest interface Third party interface – very costly