Multicore and Parallel Processing Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University P & H Chapter 4.10-11, 7.1-6.

Slides:



Advertisements
Similar presentations
Chapter 4 The Processor. Chapter 4 — The Processor — 2 The Main Control Unit Control signals derived from instruction 0rsrtrdshamtfunct 31:265:025:2120:1615:1110:6.
Advertisements

1 Lecture 5: Static ILP Basics Topics: loop unrolling, VLIW (Sections 2.1 – 2.2)
ENGS 116 Lecture 101 ILP: Software Approaches Vincent H. Berk October 12 th Reading for today: , 4.1 Reading for Friday: 4.2 – 4.6 Homework #2:
CPE 731 Advanced Computer Architecture ILP: Part V – Multiple Issue Dr. Gheith Abandah Adapted from the slides of Prof. David Patterson, University of.
Computer Abstractions and Technology
Advanced Pipelining Optimally Scheduling Code Optimally Programming Code Scheduling for Superscalars (6.9) Exceptions (5.6, 6.8)
1 Advanced Computer Architecture Limits to ILP Lecture 3.
Pipeline Computer Organization II 1 Hazards Situations that prevent starting the next instruction in the next cycle Structural hazards – A required resource.
1 Lecture 10: Static ILP Basics Topics: loop unrolling, static branch prediction, VLIW (Sections 4.1 – 4.4)
Chapter 4 The Processor CprE 381 Computer Organization and Assembly Level Programming, Fall 2013 Zhao Zhang Iowa State University Revised from original.
CPE432 Chapter 4C.1Dr. W. Abu-Sufah, UJ Chapter 4C: The Processor, Part C Read Section 4.10 Parallelism and Advanced Instruction-Level Parallelism Adapted.
Instruction Level Parallelism Chapter 4: CS465. Instruction-Level Parallelism (ILP) Pipelining: executing multiple instructions in parallel To increase.
Chapter 4 CSF 2009 The processor: Instruction-Level Parallelism.
Real Processors Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University.
1 xkcd/619. Multicore & Parallel Processing Guest Lecture: Kevin Walsh CS 3410, Spring 2011 Computer Science Cornell University.
3.13. Fallacies and Pitfalls Fallacy: Processors with lower CPIs will always be faster Fallacy: Processors with faster clock rates will always be faster.
Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University Multicore & Parallel Processing P&H Chapter ,
1 Lecture: Pipeline Wrap-Up and Static ILP Topics: multi-cycle instructions, precise exceptions, deep pipelines, compiler scheduling, loop unrolling, software.
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE Computer Organization Lecture 19 - Pipelined.
Pipelining III Andreas Klappenecker CPSC321 Computer Architecture.
1  2004 Morgan Kaufmann Publishers Chapter Six. 2  2004 Morgan Kaufmann Publishers Pipelining The laundry analogy.
1 Lecture 5: Pipeline Wrap-up, Static ILP Basics Topics: loop unrolling, VLIW (Sections 2.1 – 2.2) Assignment 1 due at the start of class on Thursday.
1 Chapter Six - 2nd Half Pipelined Processor Forwarding, Hazards, Branching EE3055 Web:
Chapter 2 Instruction-Level Parallelism and Its Exploitation
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania Computer Organization Pipelined Processor Design 3.
CS 3410, Spring 2014 Computer Science Cornell University See P&H Chapter: 4.10, 1.7, 1.8, 5.10, 6.
CS 300 – Lecture 24 Intro to Computer Architecture / Assembly Language The LAST Lecture!
Multicore and Parallel Processing Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University P & H Chapter ,
Multicore and Parallel Processing Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University P & H Chapter ,
Instructor: Justin Hsia CS 61C: Great Ideas in Computer Architecture Multiple Instruction Issue, Virtual Memory Introduction 7/26/2012Summer Lecture.
Last Time Performance Analysis It’s all relative
Lecture 1: Performance EEN 312: Processors: Hardware, Software, and Interfacing Department of Electrical and Computer Engineering Spring 2013, Dr. Rozier.
Multiple Issue Processors: Superscalar and VLIW
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology Sections 1.5 – 1.11.
1 Advanced Computer Architecture Dynamic Instruction Level Parallelism Lecture 2.
RISC Architecture RISC vs CISC Sherwin Chan.
Instruction Level Parallelism Pipeline with data forwarding and accelerated branch Loop Unrolling Multiple Issue -- Multiple functional Units Static vs.
CS 3410, Spring 2014 Computer Science Cornell University See P&H Chapter: 4.10, 1.7, 1.8, 5.10, 6.4, 2.11.
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 Instructor: Dan Garcia inst.eecs.Berkeley.edu/~cs61c.
Processor Level Parallelism. Improving the Pipeline Pipelined processor – Ideal speedup = num stages – Branches / conflicts mean limited returns after.
Chapter 6 Pipelined CPU Design. Spring 2005 ELEC 5200/6200 From Patterson/Hennessey Slides Pipelined operation – laundry analogy Text Fig. 6.1.
MULTICORE PROCESSOR TECHNOLOGY.  Introduction  history  Why multi-core ?  What do you mean by multicore?  Multi core architecture  Comparison of.
12/26/20151 Pipeline Architecture since 1985  Last time, we completed the 5-stage pipeline MIPS. —Processors like this were first shipped around 1985.
Instructor: Justin Hsia CS 61C: Great Ideas in Computer Architecture Multiple Instruction Issue, Virtual Memory Introduction 8/01/2013Summer Lecture.
1  1998 Morgan Kaufmann Publishers Chapter Six. 2  1998 Morgan Kaufmann Publishers Pipelining Improve perfomance by increasing instruction throughput.
Pipelining Example Laundry Example: Three Stages
Computer Organization CS224 Fall 2012 Lesson 52. Introduction  Goal: connecting multiple computers to get higher performance l Multiprocessors l Scalability,
3/12/2013Computer Engg, IIT(BHU)1 CONCEPTS-1. Pipelining Pipelining is used to increase the speed of processing It uses temporal parallelism In pipelining,
Lecture 9. MIPS Processor Design – Pipelined Processor Design #1 Prof. Taeweon Suh Computer Science Education Korea University 2010 R&E Computer System.
Csci 136 Computer Architecture II – Superscalar and Dynamic Pipelining Xiuzhen Cheng
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruction Level Parallelism: Multiple Instruction Issue Guest Lecturer: Justin Hsia.
Advanced Pipelining 7.1 – 7.5. Peer Instruction Lecture Materials for Computer Architecture by Dr. Leo Porter is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike.
CS 3410, Spring 2014 Computer Science Cornell University See P&H Chapter: 4.10, 1.7, 1.8, 5.10, 6.4, 2.11.
Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University P & H Chapter 4.10, 1.7, 1.8, 5.10, 6.
Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University P & H Chapter 4.10, 1.7, 1.8, 5.10, 6.
Use of Pipelining to Achieve CPI < 1
Chapter Six.
CS 352H: Computer Systems Architecture
Pipeline Architecture since 1985
Single Clock Datapath With Control
Morgan Kaufmann Publishers
Chapter 4 The Processor Part 6
Morgan Kaufmann Publishers The Processor
Parallel Processing Sharing the load.
Computer Architecture
Chapter Six.
Chapter Six.
CSC3050 – Computer Architecture
Parallelism, Multicore, and Synchronization
Presentation transcript:

Multicore and Parallel Processing Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University P & H Chapter , 7.1-6

xkcd/619

Pitfall: Amdahl’s Law affected execution time amount of improvement + execution time unaffected Execution time after improvement =

Pitfall: Amdahl’s Law Improving an aspect of a computer and expecting a proportional improvement in overall performance Example: multiply accounts for 80s out of 100s

Scaling Example Workload: sum of 10 scalars, and 10 × 10 matrix sum Speed up from 10 to 100 processors? Single processor: Time = ( ) × t add 10 processors 100 processors.

Scaling Example What if matrix size is 100 × 100? Single processor: Time = ( ) × t add 10 processors 100 processors.

Goals for Today How to improve System Performance? Instruction Level Parallelism (ILP) Multicore –Increase clock frequency vs multicore Beware of Amdahls Law Next time: Concurrency, programming, and synchronization

Problem Statement Q: How to improve system performance?  Increase CPU clock rate?  But I/O speeds are limited Disk, Memory, Networks, etc. Recall: Amdahl’s Law Solution: Parallelism

Instruction-Level Parallelism (ILP) Pipelining: execute multiple instructions in parallel Q: How to get more instruction level parallelism? A: Deeper pipeline –E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz 16-stage Pipeline depth limited by… –max clock speed (less work per stage  shorter clock cycle) –min unit of work –dependencies, hazards / forwarding logic

Instruction-Level Parallelism (ILP) Pipelining: execute multiple instructions in parallel Q: How to get more instruction level parallelism?

Static Multiple Issue a.k.a. Very Long Instruction Word (VLIW) Compiler groups instructions to be issued together Packages them into “issue slots” Q: How does HW detect and resolve hazards?

MIPS with Static Dual Issue Two-issue packets One ALU/branch instruction One load/store instruction 64-bit aligned –ALU/branch, then load/store –Pad an unused instruction with nop AddressInstruction typePipeline Stages nALU/branchIFIDEXMEMWB n + 4Load/storeIFIDEXMEMWB n + 8ALU/branchIFIDEXMEMWB n + 12Load/storeIFIDEXMEMWB n + 16ALU/branchIFIDEXMEMWB n + 20Load/storeIFIDEXMEMWB

Loop: lw $t0, 0($s1) # $t0=array element addu $t0, $t0, $s2 # add scalar in $s2 sw $t0, 0($s1) # store result addi $s1, $s1,–4 # decrement pointer bne $s1, $zero, Loop # branch $s1!=0 Scheduling Example Schedule this for dual-issue MIPS ALU/branchLoad/storecycle

Scheduling Example Compiler scheduling for dual-issue MIPS… Loop: lw $t0, 0($s1) # $t0 = A[i] lw $t1, 4($s1)# $t1 = A[i+1] addu $t0, $t0, $s2 # add $s2 addu $t1, $t1, $s2 # add $s2 sw $t0, 0($s1) # store A[i] sw $t1, 4($s1) # store A[i+1] addi $s1, $s1, +8 # increment pointer bne $s1, $s3, TOP# continue if $s1!=end ALU/branch slotLoad/store slotcycle Loop:noplw $t0, 0($s1)1 noplw $t1, 4($s1)2 addu $t0, $t0, $s2nop3 addu $t1, $t1, $s2sw $t0, 0($s1)4 addi $s1, $s1, +8 sw $t1, 4($s1)5 bne $s1, $s3, TOPnop6

Scheduling Example Compiler scheduling for dual-issue MIPS… Loop: lw $t0, 0($s1) # $t0 = A[i] lw $t1, 4($s1)# $t1 = A[i+1] addu $t0, $t0, $s2 # add $s2 addu $t1, $t1, $s2 # add $s2 sw $t0, 0($s1) # store A[i] sw $t1, 4($s1) # store A[i+1] addi $s1, $s1, +8 # increment pointer bne $s1, $s3, TOP# continue if $s1!=end ALU/branch slotLoad/store slotcycle Loop:noplw $t0, 0($s1)1 addi $s1, $s1, +8 lw $t1, 4($s1)2 addu $t0, $t0, $s2nop3 addu $t1, $t1, $s2sw $t0, -8($s1)4 bne $s1, $s3, Loop sw $t1, -4($s1)5

Limits of Static Scheduling Compiler scheduling for dual-issue MIPS… lw $t0, 0($s1) # load A addi $t0, $t0, +1# increment A sw $t0, 0($s1)# store A lw $t0, 0($s2) # load B addi $t0, $t0, +1# increment B sw $t0, 0($s2)# store B ALU/branch slotLoad/store slotcycle noplw $t0, 0($s1)1 nopnop2 addi $t0, $t0, +1nop3 nopsw $t0, 0($s1)4 noplw $t0, 0($s2)5 nopnop6 addi $t0, $t0, +1nop7 nopsw $t0, 0($s2)8

Limits of Static Scheduling Compiler scheduling for dual-issue MIPS… lw $t0, 0($s1) # load A addi $t0, $t0, +1# increment A sw $t0, 0($s1)# store A lw $t1, 0($s2) # load B addi $t1, $t1, +1# increment B sw $t0, 0($s2)# store B ALU/branch slotLoad/store slotcycle noplw $t0, 0($s1)1 noplw $t1, 0($s2) 2 addi $t0, $t0, +1nop3 addi $t1, $t1, +1 sw $t0, 0($s1)4 nopsw $t1, 0($s2) 5 Problem: What if $s1 and $s2 are equal (aliasing)? Won’t work

Dynamic Multiple Issue a.k.a. SuperScalar Processor (c.f. Intel) CPU examines instruction stream and chooses multiple instructions to issue each cycle Compiler can help by reordering instructions…. … but CPU is responsible for resolving hazards Even better: Speculation/Out-of-order Execution Execute instructions as early as possible Aggressive register renaming Guess results of branches, loads, etc. Roll back if guesses were wrong Don’t commit results until all previous insts. are retired

Dynamic Multiple Issue

Does Multiple Issue Work? Q: Does multiple issue / ILP work? A: Kind of… but not as much as we’d like Limiting factors? Programs dependencies Hard to detect dependencies  be conservative –e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2; Hard to expose parallelism –Can only issue a few instructions ahead of PC Structural limits –Memory delays and limited bandwidth Hard to keep pipelines full

Power Efficiency Q: Does multiple issue / ILP cost much?

Moore’s Law Pentium Atom P4 Itanium 2 K8 K10 Dual-core Itanium 2

Why Multicore? Moore’s law A law about transistors Smaller means more transistors per die And smaller means faster too But: Power consumption growing too…

Power Limits Hot Plate Rocket Nozzle Nuclear Reactor Surface of Sun Xeon

Power Wall Power = capacitance * voltage 2 * frequency In practice: Power ~ voltage 3 Reducing voltage helps (a lot)... so does reducing clock speed Better cooling helps The power wall We can’t reduce voltage further We can’t remove more heat

Why Multicore? Power 1.0x Performance Single-Core Power 1.2x 1.7x Performance Single-Core Overclocked +20% Power 0.8x 0.51x Performance Single-Core Underclocked -20% 1.6x 1.02x Dual-Core Underclocked -20%

Inside the Processor AMD Barcelona Quad-Core: 4 processor cores

Inside the Processor Intel Nehalem Hex-Core

Hyperthreading Multi-Core vs. Multi-Issue Programs: Num. Pipelines: Pipeline Width:. vs. HT N1N N11 1NN

Hyperthreading Multi-Core vs. Multi-Issue Programs: Num. Pipelines: Pipeline Width: Hyperthreads HT = MultiIssue + extra PCs and registers – dependency logic HT = MultiCore – redundant functional units + hazard avoidance Hyperthreads (Intel) Illusion of multiple cores on a single core Easy to keep HT pipelines full + share functional units vs. HT N1N N11 1NN

Example: All of the above

Parallel Programming Q: So lets just all use multicore from now on! A: Software must be written as parallel program Multicore difficulties Partitioning work Coordination & synchronization Communications overhead Balancing load over cores How do you write parallel programs? –... without knowing exact underlying architecture?

Work Partitioning Partition work so all cores have something to do

Load Balancing Need to partition so all cores are actually working

Amdahl’s Law If tasks have a serial part and a parallel part… Example: step 1: divide input data into n pieces step 2: do work on each piece step 3: combine all results Recall: Amdahl’s Law As number of cores increases … time to execute parallel part? time to execute serial part? Serial part eventually dominates goes to zero Remains the same

Amdahl’s Law

Parallel Programming Q: So lets just all use multicore from now on! Multicore difficulties Partitioning work Coordination & synchronization Communications overhead Balancing load over cores How do you write parallel programs? –... without knowing exact underlying architecture?

Administrivia Lab3 is due today, Thursday, April 11 th Project3 available now, due Monday, April 22 nd Design Doc due next week, Monday, April 15 th Schedule a Design Doc review Mtg now, by tomorrow Friday, April 12 th See me after class if looking for new partner Competition/Games night Friday, April 26 th, 5-7pm. Location: B17 Upson Homework4 is available now, due next week, Wednesday, April 17 th Work alone Question1 on Virtual Memory is pre-lab question for in-class Lab4 HW Help Session Thurs (Apr 11) and Mon (Apr 15), 6-7:30pm in B17 Upson Prelim3 is in two weeks, Thursday, April 25 th Time and Location: 7:30pm in Phillips 101 and Upson B17 Old prelims are online in CMS

Administrivia Next four weeks Week 11 (Apr 8): Lab3 due and Project3/HW4 handout Week 12 (Apr 15): Project3 design doc due and HW4 due Week 13 (Apr 22): Project3 due and Prelim3 Week 14 (Apr 29): Project4 handout Final Project for class Week 15 (May 6): Project4 design doc due Week 16 (May 13): Project4 due