Entanglement Creation in Open Quantum Systems Fabio Benatti Department of Theoretical Physics University of Trieste Milano, December 1, 2006 In collaboration.

Slides:



Advertisements
Similar presentations
System of linear Equation
Advertisements

4.5 2x2 Matrices, Determinants and Inverses
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir.
Wigner approach to a new two-band envelope function model for quantum transport n. 1 di 22 Facoltà di Ingegneria ICTT19 – 19 th International Conference.
Wigner approach to a two-band electron-hole semi-classical model n. 1 di 22 Graz June 2006 Wigner approach to a two-band electron-hole semi-classical model.
Wigner approach to a new two-band envelope function model for quantum transport n. 1 di 22 Facoltà di Ingegneria ICTT19 – 19 th International Conference.
Subspace Embeddings for the L1 norm with Applications Christian Sohler David Woodruff TU Dortmund IBM Almaden.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
February 7, 2002 A brief review of Linear Algebra Linear Programming Models Handouts: Lecture Notes.
Points, Vectors, Lines, Spheres and Matrices
1 PV Generation in the Boundary Layer Robert Plant 18th February 2003 (With thanks to S. Belcher)
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
Solve Multi-step Equations
Chapter 3 Determinants 3.1 The Determinant of a Matrix
Higher-order linear dynamical systems Kay Henning Brodersen Computational Neuroeconomics Group Department of Economics, University of Zurich Machine Learning.
Copyright © Cengage Learning. All rights reserved.
Wednesday, 04 June 2014 QCD&NA Yale Using Poisson Brackets on Group Manifolds to Tune HMC A D Kennedy School of Physics, The University of Edinburgh.
Detection Chia-Hsin Cheng. Wireless Access Tech. Lab. CCU Wireless Access Tech. Lab. 2 Outlines Detection Theory Simple Binary Hypothesis Tests Bayes.
Equations, Tables and Graphs Graphing Activity. Warm UP xy InputOutput Determine if the following relations are functions.
1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14: :00 Thursday 9 th Feb 14: :00.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
1..
Joint work with Andre Lieutier Dassault Systemes Domain Theory and Differential Calculus Abbas Edalat Imperial College Oxford.
Abbas Edalat Imperial College London Contains joint work with Andre Lieutier (AL) and joint work with Marko Krznaric (MK) Data Types.
Quantum versus Classical Correlations in Gaussian States Gerardo Adesso joint work with Animesh Datta (Imperial College / Oxford) School of Mathematical.
Cavity cooling of a single atom James Millen 21/01/09.
6.4 Best Approximation; Least Squares
+21 Economic Expectations Europe December 2013 Indicator > +20 Indicator 0 to +20 Indicator 0 to -20 Indicator < -20 European Union total: +14 Indicator.
25 seconds left…...
4.5 Inverses of Matrices.
TRIANGULAR MATRICES A square matrix in which all the entries above the main diagonal are zero is called lower triangular, and a square matrix in which.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Dantzig-Wolfe Decomposition
PSSA Preparation.
Anupam Saxena Associate Professor Indian Institute of Technology KANPUR
( ( ) quantum bits conventional bit
Constraints on N-Level Systems* Allan Solomon 1,2 and Sonia Schirmer 3 1 Dept. of Physics & Astronomy. Open University, UK
Frustration of Decoherence and Entanglement-sharing in the Spin-bath Andrew Hines Christopher Dawson Ross McKenzie Gerard Milburn.
Quantum critical states and phase transitions in the presence of non equilibrium noise Emanuele G. Dalla Torre – Weizmann Institute of Science, Israel.
Suppressing decoherence and heating with quantum bang-bang controls David Vitali and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Adiabatic Quantum Computation with Noisy Qubits Mohammad Amin D-Wave Systems Inc., Vancouver, Canada.
Classical capacities of bidirectional channels Charles Bennett, IBM Aram Harrow, MIT/IBM, Debbie Leung, MSRI/IBM John Smolin,
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
Chien Hsing James Wu David Gottesman Andrew Landahl.
Autonomous Quantum Error Correction Joachim Cohen QUANTIC.
Using Inverse Matrices Solving Systems. You can use the inverse of the coefficient matrix to find the solution. 3x + 2y = 7 4x - 5y = 11 Solve the system.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Spring 2013 Solving a System of Linear Equations Matrix inverse Simultaneous equations Cramer’s rule Second-order Conditions Lecture 7.
ENTANGLEMENT IN SMALL SELF-CONTAINED QUANTUM FRIDGES NICOLAS BRUNNER, RALPH SILVA, PAUL SKRZYPCZYK, MARCUS HUBER NOAH LINDEN & SANDU POPESCU SINGAPORE.
Motivation and goals One particle, two particles: previous work Three particles: flow through particles Many particles: flow along networks Application:
4.4 & 4.5 Notes Remember: Identity Matrices: If the product of two matrices equal the identity matrix then they are inverses.
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
Test for entanglement: realignment criterion, entanglement witness and positive maps Kai Chen † CQIQC, Toronto, July 2004 † Kai Chen is now a postdoctoral.
Chiranjib Mitra IISER-Kolkata
Quantum dynamics of two Brownian particles
Constraints on Dissipative Processes Allan Solomon 1,2 and Sonia Schirmer 3 1 Dept. of Physics & Astronomy. Open University, UK
Quantum Information Quantum Mechanics SecondYouth Quantum Information: Quantum Mechanics SecondYouth Quantum Entanglement Quantum Noise Fabio Benatti,
DYNAMICS OF OPEN Q-SYSTES FROM A PERSPECTIVE OF QIT IMS, Imperial College, London, 18 January 2007 Vladimír Bužek Research Center for Quantum Information.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
GUIDED PRACTICE for Example – – 2 12 – 4 – 6 A = Use a graphing calculator to find the inverse of the matrix A. Check the result by showing.
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
International Scientific Spring 2016
The Landau-Teller model revisited
Linear Quantum Error Correction
Multiplicative Inverses of Matrices and Matrix Equations
Geometric phase and the Unruh effect
Quantum Key Distribution
Presentation transcript:

Entanglement Creation in Open Quantum Systems Fabio Benatti Department of Theoretical Physics University of Trieste Milano, December 1, 2006 In collaboration with R. Floreanini

Outline Open quantum dynamics: dissipation and decoherence Open quantum dynamics: dissipation and decoherence Entanglement in open quantum systems: creation and its persistence Entanglement in open quantum systems: creation and its persistence

Open Quantum Dynamics qubits (S) in interaction with an environment (E): heat bath, external classical noise qubits (S) in interaction with an environment (E): heat bath, external classical noise weak coupling limit: Lindblad equation weak coupling limit: Lindblad equation H S + E = H 0 S ­ 1 E + 1 S ­ H E + ¸P® V ® ­ B ® L am b -s h i f t e d H0S NOISE t ½(t)= L[½(t)] = ¡ i [ H S ; ½ ( t )] + D [ ½ ( t )] D [ ½ ( t )] = X ij D ij £ F i ½ ( t ) F y j ¡ 1 2 © F y i F j ; ½ ( t ) ª¤

Phenomenological Coefficients Kossakowski matrix Kossakowski matrix dissipative generator after ergodic mean dissipative generator after ergodic mean D : = [ D ij ] ¸ 0 V ® ( ! ) = X E a ¡ E b = ! P a V ® P b H 0 S =Xa E a P a h ® ¯ ( ! ) = d t ei! t G ® ¯ ( t ) R V ® ( ! ) = X i ( T r ( F y i V ® ( ! )) F i D [ ½ ] = X ® ; ¯ X ! h ® ¯ ( ! )( V ® ( ! ) ½ V y ¯ ( ! ) ¡ 1 2 f V y ¯ ( ! ) V ® ( ! ) ; ½ g) T r ( Fyi F j ) = ± ij G ® ¯ ( t ) = ! E ( B ® ( t ) B ¯ )

Physical Consistency Complete Positivity necessary for the physical consistency of necessary for the physical consistency of equivalent to complete positivity of equivalent to complete positivity of for all entangled states of for all entangled states of any n-level ancilla any n-level ancilla D : = [ D ® ¯ ] ¸ 0 ° t = e t L ; t ¸ 0 ; ½ 7! ½ ( t ) = ° t [ ½ ] ° t ° t ­ i d [ ½ en t ] ¸ 0 S + S n Sn

One open 2-level atom S(ystem)+E(nvironment): S(ystem)+E(nvironment): Lindblad equation for 1 qubit density matrices: Lindblad equation for 1 qubit density matrices: D = D 11 D 12 D 13 D 21 D 22 D 13 D 31 D 32 D 33 ¸ X i ; j = 1 D ij [ ¾ i ½ ( t ) ¾ j ¡ 1 2 f ¾ j ¾ i ; ½ ( t )g] + ¸3X i = 1 ¾ i ­ B i H S + E = ( ! X i = 1 n i ¾ i ) |{z} H 0 S ­ 1 E + 1 S ­ H t ½ ( t ) = ¡ i [ H S ; ½ ( t )]

Two open 2-level atoms S(1)+S(2)+E: no direct S(1)--S(2) interaction S(1)+S(2)+E: no direct S(1)--S(2) interaction ( ! X i = 1 n i ¾ i ) |{z} H 0 1 H S + E = + 1 S 1 ­­ 1 E ­HE ( ! X i = 1 n i ¾ i |{z} H 0 2 ) ­ ( 1 S 2 ­ 1 E ) + 1 S 1 ­ 1 S 2 + ¸ 3 X i = 1 ¡ ¾ i ­ 1 S 2 ) ­ B i + ( 1 S 1 ­ ¾ i ) ­ B i + 1

Lindblad for two open atoms + 3 X i ; j = 1 B ij [( ¾ i ­ 1 2 ) ½ ( t )( 1 1 ­ ¾ j ) ¡ 1 2 f ¾ i ­ ¾ j ; ½ ( t )g] + 3 X i ; j = 1 B ¤ ji [( 1 1 ­ ¾ i ) ½ ( t )( ¾ j ­ 1 2 ) ¡ 1 2 f ¾ j ­ ¾ i ; ½ ( t )g] + 3 X i ; j = 1 A ij [( ¾ i ­ 1 2 ) ½ ( t )( ¾ j ­ 1 2 ) ¡ 1 2 f ¾ j ¾ i ­ 1 2 ; ½ ( t )g] + 3 X i ; j = 1 C ij [( 1 1 ­ ¾ i ) ½ ( t )( 1 1 ­ ¾ j ) ¡ 1 2 f 1 1 ­ ¾ j ¾ i ; ½ ( t )g] + D [ ½ ( t )] = ¡ i [ H 1 ­ ­ H 2 + H 12 ; ½ ( t )] D [ ½ ( t )] : L H [ ½ ( t t ½ ( t ) = L [ ½ ( t )] = By= [ B ¤ ji ] B = [ B ij ] A = [ A ij ] C =[C ij] Environment induced interaction

¾ ( ® ) = ¾ ® ­ 1 2 ® = 1 ; 2 ; 3 ¾ ( ® ) = 1 1 ­ ¾ ® ¡ 3 ® = 4 ; 5 ; 6 D = AB B y C ¸ 0 Can without direct interaction generate entanglement ? H12 ¡ i [ H 1 ­ ­ H 2 ; ½ ( t )] + D [ ½ ( t t ½ ( t ) = D [ ½ ( t )] =6X ® ; ¯ = 1 D ® ¯ [ ¾ ( ® ) ½ ( t ) ¾ ( ¯ ) ¡ 1 2 f ¾ ( ¯ ) ¾ ( ® ) ; ½ ( t )g]

Sufficient Condition ( F.B., R. Floreanini, M. Piani, PRL 2003) an initial 2 qubit separable state an initial 2 qubit separable state gets entangled as soon as if gets entangled as soon as if j Á 1 ih Á 1 j ­ j  1 ih  1 j t > 0 ( R e ( B )) ij = 1 2 ( B ij + B ¤ ij ) j u i =hÁ 1j¾ 1jÁ 2ih Á 1 j ¾ 2 j Á 2 i h Á 1 j ¾ 3 j Á 2 i ; Á 1 ?Á 2 j v i =h 2j¾ 1j 1ih  2 j ¾ 2 j  1 i h  2 j ¾ 3 j  1 i ;  1 ?  2 h u j A j u ih v j C T j v i < jh u j R e ( B )j v ij 2

Idea for proof use partial transposition to check whether use partial transposition to check whether as well the the maps the maps as well the the maps the maps form a semigroup with generator form a semigroup with generator i d ­ T ( i d ± T ) ± ° t [j Á 1 ih Á 1 j ­ j  1 ih  1 j] ¸ 0 ° t ; t ¸0; + R [ ½ ( t )] ¡ i [ e H ; ½ ( t )] R [ ½ ] = 6 X ® ; ¯ = 1 Q ® ¯ [ ¾ ( ® ) ½¾ ( ¯ ) ¡ 1 2 f ¾ ( ¯ ) ¾ ( ® ) ; ½ g] G [ ½ ] = g t : = ( i d ­ T ) ± ° t ± ( i d ­ T ) = e tG

need not be positive need not be positive need not preserve the positivity of ( i d ­ T )[j Á 1 ih Á 1 j ­ j  1 ih  1 j] need not be positive ( i d ­ T ) ± ° t [j Á 1 ih Á 1 j ­ j  1 ih  1 j] Q = AR e(B)R e ( B T ) C T g t = ( i d ­ T ) ± ° t ± ( i d ­ T )

E à ; Á 1 ;  1 ( t ) : = h à j g t [j Á 1 ih Á 1 j ­ j  ¤ 1 ih  ¤ 1 j]j à i T [j  1 ih  1 j] = j  ¤ 1 ih  ¤ 1 j t E à ; Á 1 ;  1 ( 0 ) = 6 X ® ; ¯ = 1 Q ® ¯ h à j ¾ ( ® ) (j Á 1 ih Á 1 j ­ j  ¤ 1 ih  ¤ 1 j) ¾ ( ¯ ) j à i E à ; Á 1 ;  1 ( 0 ) = jh à j Á 1 ­  ¤ 1 ij 2 = 0 and get entangled j Á 1 i ­ j  1 i E à ; Á ;  1 ( t ) < 0 t ! 0 +

Particular Case: choose choose sufficient condition becomes sufficient condition becomes A = B = C ¸ 0 Á 1 = Â 2 =)jui=jvi h u j A j u ih u j ATj u i < jh u j R e ( A )j u ij 2 (h u j I m ( A )j u i) 2 > 0 A = A y = R e ( A ) + I m ( A ) ; < ( A ) = A + AT2 I m ( A ) : = 1 2 ( A ¡ A T )

A = a 1 i b 0 ¡ i b a a 3 ; a 1 ; 2 ; 3 ¸ 0 ; a 1 a 2 ¸ b 2 I m ( A ) = 0 i b 0 ¡ i b Example:jÁ 1i=j 2i=j¡i; ¾ 3j§i= §j§i j u i = 1 i 0 h u j I m ( A )j u i)2= 4 b2> 0 If, gets entangled for small timesb6= 0 j ¡ ih ¡ j ­ j + ih + j

Two atoms in a scalar thermal field in equilibrium at inverse temperature qubit 1 and qubit 2 linearly coupled to qubit 1 and qubit 2 linearly coupled to full Hamiltonian: full Hamiltonian: H 0 1 = H 0 2 = ! X i = 1 n i ¾ i F ( x ) h F i ( x ) F j ( y )i = ± ij G ( x ¡ y ) = ± ij d 4 k ( 2 ¼ ) 3 µ ( k 0 ) ± ( k 2 )( e ¡ i k ( x ¡ y ) 1 ¡ e ¡ ¯k 0 + e + i k ( x ¡ y ) e ¯k 0 ¡ 1 ) + ¸ 3 X i = 1 (( ¾ i ­ 1 2 ) + ( 1 1 ­ ¾ i )) ­ F i ( f ) F i ( f ) =RR 3 d x f ( x ) F i ( x ) f ( x ) = 1 ¼ 2 " = 2 x 2 + ( " = 2 ) 2 H S + E = H H H E ¯

Kossakowski matrix D explicitly calculable A = a + cn 2 1 cn 1 n 2 ¡ i b n 3 cn 1 n 3 + i b n 2 cn 1 n 2 + i b n 3 a + cn 2 2 cn 2 n 3 ¡ i b n 1 cn 1 n 3 ¡ i b n 2 cn 2 n 3 + i b n 1 a + cn 2 3 D = AA AA c = 1 2 ¼ ¯ ¡ ! 4 ¼ 1 + e ¡ ¯ ! 1 ¡ e ¡ ¯ ! a = ! 4 ¼ 1 + e ¡ ¯ ! 1 ¡ e ¡ ¯ ! b =!4 ¼

Can entanglement created irreversibly survive decoherence? YES Moreover, entangled states can remain entangled asymptotically and even become more entangled F.B., R. Floreanini (Int. J. Quant. Inf. 2006)

Quantifying Entanglement: Concurrence 2 qubits entanglement content (Wootters 1998) : 2 qubits entanglement content (Wootters 1998) : spectrum(R) = spectrum(R) = concurrence: concurrence: ¸21 ¸ ¸22 ¸ ¸23 ¸ ¸24 C ( ½ ) : = max f 0 ; ¸ 1 ¡ ¸ 2 ¡ ¸ 3 ¡ ¸ 4 g ½ 7! ^ ½: = ( ¾ 2 ­ ¾ 2 ) ½ ¤ ( ¾ 2 ­ ¾ 2 ) 7! R = ½ ^ ½

½ 1 = 1 4 ( 1 1 ­ X i = 1 ¿ ¡ R 2 ( 1 ¡ ( ¿ + 3 ) n 2 i ) 2 ( 3 + R 2 ) ¾ i ­ ¾ i + X i 6 = j R 2 ( ¿ + 3 ) n i n j 2 ( 3 + R 2 ) ¾ i ­ ¾ j ) 0 · R = b a = 1 ¡ e ¡ ¯ ! 1 + e ¡ ¯ ! · 1 ½ = 1 4 ( 1 1 ­ X i = 1 ½ 0 i 1 1 ­ ¾ i + 3 X i = 1 ½ i 0 ¾ i ­ X i ; j = 1 ½ ij ¾ i ­ ¾ j ) Any initial state goes into ¿ = 3 X i = 1 T r ( ½¾ i ­ ¾ i ) ¡ 3 X i = 1 R n i ( ¿ + 3 ) 3 + R 2 ( 1 1 ­ ¾ i + ¾ i ­ 1 2 ) R(¯ = 0)= 0

Asymptotic Concurrence: initial state: initial state: concurrence: concurrence: asymptotic gain: asymptotic gain: C ( ½ ) = 1 ¡ 3 s 2 ; s < 2 3 C ( ½ 1 ) ¡ C ( ½ ) = 3 R 2 s 3 + R 2 ½ =s4 1 S 1 ­ 1 S 2 + ( 1 ¡ s )j ª 01 ih ª 01 j C ( ½ 1 ) = 3 ¡ R22 ( 3 + R 2 ) [ 5 R2¡ 3 3 ¡ R 2 ¡ ¿ ]

Two atoms separated by a distance L interaction Hamiltonian: interaction Hamiltonian: smearing functions: smearing functions: f 1 ( x ) = 1 ¼ 2 " = 2 x 2 + ( " = 2 ) 2 f 2 ( x ) = f ( x + L ) H i n t =3X i = 1 ( ¾ ( 1 ) i ­ F i ( f 1 ) + ¾ ( 2 ) i ­ F i ( f 2 ))

Kossakowski Matrix b = ! 4 ¼ c = 1 2 ¼ ¯ ¡ ! 4 ¼ 1 + e ¡ ¯ ! 1 ¡ e ¡ ¯ ! A = a + cn 2 1 cn 1 n 2 ¡ i b n 3 cn 1 n 3 + i b n 2 cn 1 n 2 + i b n 3 a + cn 2 2 cn 2 n 3 ¡ i b n 1 cn 1 n 3 ¡ i b n 2 cn 2 n 3 + i b n 1 a + cn 2 3 a = ! 4 ¼ 1 + e ¡ ¯ ! 1 ¡ e ¡ ¯ ! D = AA0A 0 A A 0 = a 0 + cn 2 1 c 0 n 1 n 2 ¡ i b 0 n 3 c 0 n 1 n 3 + i b 0 n 2 c 0 n 1 n 2 + i b 0 n 3 a 0 + cn 2 2 c 0 n 2 n 3 ¡ i b 0 n 1 c 0 n 1 n 3 ¡ i b 0 n 2 c 0 n 2 n 3 + i b 0 n 1 a 0 + c 0 n 2 3 b 0 = ! 4 ¼ s i n ( ! L ) ! L c 0 = 1 2 ¼ ¯ ¡ ! 4 ¼ 1 + e ¡ ¯ ! 1 ¡ e ¡ ¯ ! s i n ( L ) ! L a 0 = ! 4 ¼ 1 + e ¡ ¯ ! 1 ¡ e ¡ ¯ ! s i n! L ! L

Controlling Entanglement Creation separable initial state: separable initial state: sufficient condition: sufficient condition: with it becomes with it becomes separable if separable if ½ =j¡i¡j­j+ih+j jui=jvi=(1 ; ¡ i ; 0) R 2 + S 2 > 1 S = s i n(! L)! L R = b a = 1 ¡ e ¡¯! 1 + e ¡ ¯ ! h u j A j u ih v j ATj v i < jh u j R e ( A 0 )j v ij 2 ½1 L > 0 T =1¯ = 1