On robots that play soccer René van de Molengraft 11 december 2009.

Slides:



Advertisements
Similar presentations
Mobile Robot Localization and Mapping using the Kalman Filter
Advertisements

World Model implementation & results Workshop Stuttgart, 5/6 November 2009 Rob Janssen.
A Hierarchical Multiple Target Tracking Algorithm for Sensor Networks Songhwai Oh and Shankar Sastry EECS, Berkeley Nest Retreat, Jan
João Rodrigues, Sérgio Brandão, Rui Rocha, Jorge Lobo, Jorge Dias {joaor, {jlobo, rprocha, Introduction The.
Robocup ve USARSIM Dr. Muhammet Balcılar. What is RoboCup? an international research and education initiative an attempt to foster AI and intelligent.
An appearance-based visual compass for mobile robots Jürgen Sturm University of Amsterdam Informatics Institute.
RoboCup Junior Gail Chapman Luella High School. RoboCup Junior RoboCup Junior is a project-oriented educational initiative that sponsors local, regional.
(Includes references to Brian Clipp
Monte Carlo Localization for Mobile Robots Karan M. Gupta 03/10/2004
Designing Motion Patterns to Increase Effectiveness of the Goal Keeper in Robot Soccer David Seibert Faculty Advisor: Dr. Mohan Sridharan Texas Tech University.
Play-Based Team Coordination Boeing Treasure Hunt Individual Visit Manuela Veloso, Brett Browning CORAL Research Group.
Uncertainty Representation. Gaussian Distribution variance Standard deviation.
Oklahoma State University Generative Graphical Models for Maneuvering Object Tracking and Dynamics Analysis Xin Fan and Guoliang Fan Visual Computing and.
Introduction to Mobile Robotics Bayes Filter Implementations Gaussian filters.
Formation et Analyse d’Images Session 8
Visual Navigation in Modified Environments From Biology to SLAM Sotirios Ch. Diamantas and Richard Crowder.
Probabilistic Robotics: Kalman Filters
Motion Tracking. Image Processing and Computer Vision: 82 Introduction Finding how objects have moved in an image sequence Movement in space Movement.
Autonomous Robot Navigation Panos Trahanias ΗΥ475 Fall 2007.
Interim Presentation Advancing the soccer robot Ben Jenkins Supervisors: Gordon Lowe, Dr. Haim Hiok Lim Mentor: Charles Greif.
Learning in Artificial Sensorimotor Systems Daniel D. Lee.
Robust Lane Detection and Tracking
Particle Filters for Mobile Robot Localization 11/24/2006 Aliakbar Gorji Roborics Instructor: Dr. Shiri Amirkabir University of Technology.
RoboCup Soccer‏ Nidhi Goel Course: cs575 Instructor: K. V. Bapa Rao.
Probabilistic Robotics
City College of New York 1 Dr. John (Jizhong) Xiao Department of Electrical Engineering City College of New York A Taste of Localization.
Probabilistic Robotics Bayes Filter Implementations Gaussian filters.
Simultaneous Localization and Map Building System for Prototype Mars Rover CECS 398 Capstone Design I October 24, 2001.
Goal: Fast and Robust Velocity Estimation P1P1 P2P2 P3P3 P4P4 Our Approach: Alignment Probability ●Spatial Distance ●Color Distance (if available) ●Probability.
RoboCup: The Robot World Cup Initiative Based on Wikipedia and presentations by Mariya Miteva, Kevin Lam, Paul Marlow.
Overview and Mathematics Bjoern Griesbach
Jason Li Jeremy Fowers Ground Target Following for Unmanned Aerial Vehicles.
D D L ynamic aboratory esign 5-Nov-04Group Meeting Accelerometer Based Handwheel State Estimation For Force Feedback in Steer-By-Wire Vehicles Joshua P.
© 2003 The RoboCup Federation Progress and Research Results In Robot Soccer Professor Peter Stone Trustee, The RoboCup Federation Department of Computer.
Fuzzy control of a mobile robot Implementation using a MATLAB-based rapid prototyping system.
Mobile Robot controlled by Kalman Filter
Zereik E., Biggio A., Merlo A. and Casalino G. EUCASS 2011 – 4-8 July, St. Petersburg, Russia.
Current Development & Future Work Workshop Kassel, 20/21 November 2008 Rob Janssen.
Building a Robot Soccer Team David Cohen and Paul Vernaza University of Pennsylvania.
Welcome to our presentation Aibo field localisation ( Woiyl Hammoumi Vladimir Nedovic Bayu Slamet Roberto Valenti February.
Markov Localization & Bayes Filtering
TP15 - Tracking Computer Vision, FCUP, 2013 Miguel Coimbra Slides by Prof. Kristen Grauman.
Real-time object tracking using Kalman filter Siddharth Verma P.hD. Candidate Mechanical Engineering.
TechUnited Robocup – the object tracking problem René van de Molengraft MSL Workshop, Stuttgart, November 5/6 th, 2009.
Navi Rutgers University 2012 Design Presentation
From Bayesian Filtering to Particle Filters Dieter Fox University of Washington Joint work with W. Burgard, F. Dellaert, C. Kwok, S. Thrun.
Robosoccer Team MI20 presents … Supervisors Albert Schoute Mannes Poel Current team members Paul de Groot Roelof Hiddema Mobile Intelligence Twente.
2005 Level IV Design Project SOCCER ROBOTS Michael Hill Nicholas Jones Michael Shanahan Supervisor: Dr Frank Wörnle.
Probabilistic Robotics Bayes Filter Implementations Gaussian filters.
Young Ki Baik, Computer Vision Lab.
Humanoid Robots Motivation Humanoid Projects RoboCup Humanoid League Robots  Alpha  RoboSapien  Kondo Personal Robots.
Forward-Scan Sonar Tomographic Reconstruction PHD Filter Multiple Target Tracking Bayesian Multiple Target Tracking in Forward Scan Sonar.
MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation 1 Dynamic Sensor Resource Management for ATE MURI.
Visual SLAM Visual SLAM SPL Seminar (Fri) Young Ki Baik Computer Vision Lab.
A Multidisciplinary Approach for Using Robotics in Engineering Education Jerry Weinberg Gary Mayer Department of Computer Science Southern Illinois University.
The Hardware Design of the Humanoid Robot RO-PE and the Self-localization Algorithm in RoboCup Tian Bo Control and Mechatronics Lab Mechanical Engineering.
State Estimation and Kalman Filtering
2/8/2005 TEAM: L.A.R.G.E. Slide: 1 LTU AIBO Research Group Alumni Association Support Request Tuesday February 8, 2005.
Chapter 7. Learning through Imitation and Exploration: Towards Humanoid Robots that Learn from Humans in Creating Brain-like Intelligence. Course: Robots.
Looking at people and Image-based Localisation Roberto Cipolla Department of Engineering Research team
State Estimation for Autonomous Vehicles
COMP 417 – Jan 12 th, 2006 Guest Lecturer: David Meger Topic: Camera Networks for Robot Localization.
Vision-based SLAM Enhanced by Particle Swarm Optimization on the Euclidean Group Vision seminar : Dec Young Ki BAIK Computer Vision Lab.
Tracking with dynamics
Particle Filtering. Sensors and Uncertainty Real world sensors are noisy and suffer from missing data (e.g., occlusions, GPS blackouts) Use sensor models.
Oktay Arslan Alex Cunningham Philip Rogers Final Project Propsoal RoboCup Offensive Passing System.
University of Pennsylvania 1 GRASP Control of Multiple Autonomous Robot Systems Vijay Kumar Camillo Taylor Aveek Das Guilherme Pereira John Spletzer GRASP.
RoboCup: The Robot World Cup Initiative
Pursuit-Evasion Games with UGVs and UAVs
A Short Introduction to the Bayes Filter and Related Models
Presentation transcript:

On robots that play soccer René van de Molengraft 11 december 2009

RoboCup Mission / faculteit werktuigbouwkunde PAGE “By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team”

RoboCup RoboCup Junior / faculteit werktuigbouwkunde PAGE

RoboCup / faculteit werktuigbouwkunde PAGE

RoboCup Standard platform league / faculteit werktuigbouwkunde PAGE

RoboCup / faculteit werktuigbouwkunde PAGE Humanoid league

RoboCup Middle Size League / faculteit werktuigbouwkunde PAGE

Hall Object / faculteit werktuigbouwkunde PAGE

Tech United Eindhoven Facts / faculteit werktuigbouwkunde PAGE Started spring active members : second place

TU/e – Control Systems Technology / faculteit werktuigbouwkunde PAGE Robotics research researchexperimenteren onderwijs RoboCup Robotics in Care and Cure RoboEarth

Care – Domestic Robotics / faculteit werktuigbouwkunde PAGE

Cure – Medical Robotics / faculteit werktuigbouwkunde PAGE

TU/e – Control Systems Technology / faculteit werktuigbouwkunde PAGE What makes a robot a robot? Autonomous Intelligence Sensors and actuators Complexity  Dynamic, unstructured environment

TU/e – Control Systems Technology / faculteit werktuigbouwkunde PAGE Challenges 3D-sensing World modeling Learning

TU/e – Control Systems Technology / faculteit werktuigbouwkunde PAGE RoboEarth WWW for and by robots Share any reusable knowledge

State of the art - Humanoid / faculteit werktuigbouwkunde PAGE Honda’s Asimo

State of the art - Android / faculteit werktuigbouwkunde PAGE REPLIEE, Osaka University, Japan

Why humanoid/android robots? / faculteit werktuigbouwkunde PAGE Advantages Familiar Fits environment

State of the art - Tele-operated / faculteit werktuigbouwkunde PAGE iBOT, Independence Technology

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Autonomous soccer Field 12x18 meter 5 vs 5 robots Two halves of 15 min. Human referee Design constraints FIFA rules Additions Robocup: size, weight, color Middle Size League

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Fully autonomous Vision and localisation Fast and safe Ball handling (‘do not clamp’) Ball kick Team play Challenges

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Manage complexity Keep it simple Hierarchy Make choices explicit Use models Create robustness Redundancy Rules of thumb

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE team robot Bottom up design

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Localisation Soccer skills Intercept, dribble, kick Soccer roles Attacker, defender, goalkeeper Soccer tactics Pass, assist, play system Requirements

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Low level (hardware) functions Drive Kick Ball handling World sensing High level (software) functions Localisation Skills Roles and strategy Functions

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Localisation Which sensors? Vision Odometry Accelerometers Laser Hardware or software? CPU power Sensor fusion Design space exploration

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Interdisiplinary Mechanics Electronics Informatics Specialists needed! Model-based design (simulation and prototyping Early integration Multidisciplinary design

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Evolution and revolution Devbot Model 2006 Model 2007 Model 2008 Model 2009

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Motion platform: evolution Base frameClosed box

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Kicker: revolution Pneumatic Solenoid

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Kick variation: (r)evolution

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Hardware Omni-vision camera Electronic compass Odometry with motor encoders Software White-line detection Compass calibration Sensor fusion Localisation

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE White line detection

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Avoid obstacles Find ‘open space’ Determine subtargets Obstacle tracker Prediction Motion planning

How to build a soccer robot? / faculteit werktuigbouwkunde PAGE Robot architecture omni- drive kicker ball- handling omni- vision compass Motion control kicker control ball control image acquis. compass acquis. localisation task executer skills skill planner HW SW

World modeling / faculteit werktuigbouwkunde PAGE Object tracking 5 against 5 >30 kg, 4 m/s Omni-vision: 30 x 640 x 480 x 3 bytes/s Assume features (x, y, r) from omni- vision Noise (shadow, motion blur, finite resolution) and multiple features/object

Object tracking / faculteit werktuigbouwkunde PAGE Motion planning

Object tracking / faculteit werktuigbouwkunde PAGE At time t1: m1 measurements, n1 objects m1*n1 possible associations At next time t2: m1*n1*m2*n2 Combinatorial explosion

Object tracking / faculteit werktuigbouwkunde PAGE D position measurements from vision Constant velocity model Stationary Kalman filter State estimation

Object tracking / faculteit werktuigbouwkunde PAGE Zero-acceleration Object model

Object tracking / faculteit werktuigbouwkunde PAGE Choose uncertainty weigths Solve Riccati equation -> K Variance equation is disregarded Kalman filter

Object tracking / faculteit werktuigbouwkunde PAGE Inspired by Schubert and Sidenbladh, Sequential clustering with particle filters – estimating the number of clusters from data, 2005 Prune exploding tree by particle filtering Static objects only Sequential clustering using Kalman filters

Object tracking / faculteit werktuigbouwkunde PAGE Prune exploding tree by discrete filtering Track dynamic objects Incorporate a-priori knowledge Sequential clustering using Kalman filters

Object tracking / faculteit werktuigbouwkunde PAGE Measurements are processed sequentially Measurement can be associated with clutter new object existing object Sequential clustering using Kalman filters

Object tracking / faculteit werktuigbouwkunde PAGE , 2, 5, 52, 203, 877, 4140, 21147, , [] [0] [1] [0,0][0,1] [1,0] [1,1][1,2] measurement 1 measurement 2 Tree with all possible associations

Object tracking / faculteit werktuigbouwkunde PAGE E.g. H= [0, 1, 1, 2, 1, 2, 3, 0, 1, 1, 1, 4, 2] So, 4 objects -> 4 Kalman filters Each hypothesis is assigned a probability Propagate hypotheses via Bayesian filtering Hypothesis H

Object tracking / faculteit werktuigbouwkunde PAGE Prediction

Object tracking / faculteit werktuigbouwkunde PAGE is the position of the object in assigned to measurement k Correction

Object tracking / faculteit werktuigbouwkunde PAGE Set of hypotheses form a discrete distribution Select n hypotheses with highest probability Throw away hypotheses with P<0.01*Pmax Tree is pruned to at most n hypotheses n = 10 still works for 10 to 20 objects! Pruning by discrete filter

Object tracking / faculteit werktuigbouwkunde PAGE Region of interest Clip beyond boundary in state space Measurements Objects in hypotheses Maximum number of objects in hypthesis A priori knowledge

Object tracking / faculteit werktuigbouwkunde PAGE Maximum a Posteriori (MAP) estimate states Best estimate

Example / faculteit werktuigbouwkunde PAGE

Implementation / faculteit werktuigbouwkunde PAGE Simulink S-function in C CPU effort linear in #measurements linear in #hypotheses quadratic in #objects < 5 ms (10, 20, 10) Add predictor for anticipation

Validation / faculteit werktuigbouwkunde PAGE Tech United – Cambada, july, 2009