Vibration Stabilization Experimental Results CLIC Main Beam and Final Focus Magnet Stabilization A.Jeremie LAPP: A.Jeremie, S.Vilalte, J.Allibe, G.Balik,

Slides:



Advertisements
Similar presentations
FINAL FOCUS: COMBINATION OF PRE ISOLATOR AND ACTIVE STABILISATION K. Artoos, C. Collette, R. Leuxe, C.Eymin, P. Fernandez, S. Janssens * The research leading.
Advertisements

Passive isolation: Pre-isolation for FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
1 LAViSta Laboratories in Annecy working on Vibration and Stabilisation Impact of random and determinist acoustic noise on vibrations at high frequencies.
SIMPLIFIED MODELS OF ILD AND SID DETECTORS: SIMULATIONS AND SCALED TEST ULB: Christophe Collette, David Tschilumba, Lionel SLAC: Marco.
Seismic sensors in PACMAN
Laser to RF synchronisation A.Winter, Aachen University and DESY Miniworkshop on XFEL Short Bunch Measurement and Timing.
Benoit BOLZON Nanobeam 2005 – Kyoto Active mechanical stabilisation LAViSta Laboratories in Annecy working on Vibration Stabilisation Catherine ADLOFF.
Stabilization of the FF quads A.Jeremie B.Bolzon, L.Brunetti, G.Deleglise, N.Geffroy A.Badel, B.Caron, R.Lebreton, J.Lottin Together with colleagues from.
QD0 stabilisation update (since last update in MDI) A.Jeremie A.Badel, B.Caron, R.LeBreton, J.Lottin, J.Allibe, G.Balik, J.P.Baud, L.Brunetti, G.Deleglise.
STABILIZATION FOR LHC INNER TRIPLETS S. Janssens, K. Artoos, M. Guinchard NOT for Distribution.
Progress towards nanometre-level beam stabilisation at ATF2 N. Blaskovic, D. R. Bett, P. N. Burrows, G. B. Christian, C. Perry John Adams Institute, University.
STABILISATION WP STATUS CTC DECEMBER 2012 The research leading to these results has received funding from the European Commission under the FP7 Research.
STABILIZATION STATUS AND PLANS The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures.
CERN VIBRATION SENSOR PROPOSAL The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures.
Metra Mess- und Frequenztechnik Radebeul / Germany Piezoelectric Accelerometers Theory & Application.
Introduction to seismic sensors (subject 3.2) Peter Novotny PACMAN meeting, CERN, 7 October 2014.
1 LAViSta Laboratories in Annecy working on Vibration and Stabilisation Catherine ADLOFF Andrea JEREMIE Jacques LOTTIN Benoît BOLZON Yannis KARYOTAKIS.
1 ATF2 project: Investigation on the honeycomb table vibrations Benoit BOLZON 33rd ATF2 meeting, 24th January 2007 Laboratories in Annecy working on Vibration.
ATF2 week meeting: Impact of cooling water on the final doublets vibrations Benoît BOLZON Laboratories in Annecy working on Vibration Stabilization 15/10/08.
Vibration measurements on the final doublets and the Shintake Monitor Benoît BOLZON7th ATF2 project meeting, 16/12/08.
STUDY OF THE HYBRID CONTROLLER ELECTRONICS FOR THE NANO-STABILISATION OF MECHANICAL VIBRATIONS OF CLIC QUADRUPOLES P. Fernández Carmona, K. Artoos, C.
Concepts for Combining Different Sensors for CLIC Final Focus Stabilisation David Urner Armin Reichold.
Techniques to approach the requirements of CLIC stability K. Artoos, O. Capatina (speaker), M. Guinchard, C. Hauviller, F. Lackner, H. Schmickler, D. Schulte.
Installation of FD in September A.Jeremie, B.Bolzon, N.Geffroy, G.Gaillard, J.P.Baud, F.Peltier With the help of KEK, SLAC, KNU and CERN colleagues For.
IN2P3 Les deux infinis G. Balik, B. Caron, L. Brunetti (LAViSta Team) LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry,
Quad-to-quad correlated motion in FLASH Ramila Amirikas, Alessandro Bertolini DESY Hamburg XFEL beam dynamics meeting, February 25 st 2008.
QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta.
LINAC STABILISATION (INCLUDING FF) MECHANICAL STABILISATION AND NANO POSITIONING WITH ANGSTROM RESOLUTION The research leading to these results has received.
An Approach to Stabilizing Large Telescopes for Stellar Interferometry It shakes like a…. [G. Vasisht, 31 March 2006] N. Di Lieto J. Sahlmann, G. Vasisht,
CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,
CLIC MDI stabilization update A.Jeremie G.Balik, B.Bolzon, L.Brunetti, G.Deleglise A.Badel, B.Caron, R.Lebreton, J.Lottin Together with colleagues from.
STABILIZATION ACHIEVEMENTS AND PLANS FOR TDR PHASE CLIC MAIN BEAM QUADRUPOLE MECHANICAL STABILIZATION K. Artoos, C. Collette, P. Fernandez Carmona, M.
CLIC MDI Working Group Vibration attenuation via passive pre- isolation of the FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
Active Vibration Stabilization for the NLC Final Focus Quads Josef Frisch, Linda Hendrickson, Thomas Himel, Andrei Seryi,
R&D ON STABILIZATION MBQ: FROM CDR TO TECHNICAL IMPLEMENTATION PHASE K. Artoos, C. Collette **, P. Fernandez Carmona, M. Guinchard, C. Hauviller, S. Janssens.
MECHANICAL STABILIZATION AND POSITIONING OF CLIC (MAIN BEAM) QUADRUPOLES WITH SUB- NANOMETRE RESOLUTION K. Artoos, C. Collette **, M. Esposito, P. Fernandez.
July 5, 2007 C. HAUVILLER CLIC stabilization Beam line and final focus.
Vibration Stability Studies of a Superconducting XFEL/ILC Accelerating Module at Room Temperature and at 4.5K R. Amirikas, A. Bertolini, W. Bialowons.
CARE / ELAN / EUROTeV Feedback Loop on a large scale quadrupole prototype Laurent Brunetti* Jacques Lottin**
CARE / ELAN / EUROTeV Active stabilization of a mechanical structure Laurent BRUNETTI LAViSta Team LAPP-IN2P3-CNRS,
Hard or Soft ? C. Collette, K. Artoos, S. Janssens, P. Fernandez-Carmona, A. Kuzmin, M. Guinchard, A. Slaathaug, C. Hauviller The research leading to these.
B. Caron, G. Balik, L. Brunetti LAViSta Team LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry, Université de Savoie,
The VIRGO Suspensions Control System Alberto Gennai The VIRGO Collaboration.
PROGRESS ON THE CLIC MBQ STABILIZATION R&D K. Artoos, C. Collette **, M. Esposito, P. Fernandez Carmona, M. Guinchard, S. Janssens*, R. Leuxe, R. Morón.
1 ATF2 Project Meeting December 2006 Ground Stabilisation with the CERN STACIS 2000 Stable Active Control Isolation System LAViSta Laboratories in.
Main beam Quad Stabilisation: Status of the stabilisation test program at CERN CLIC-stabilization day S. Janssens Contribution to slides by:
Passive isolation: Pre-isolation for FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
STABILISATION AND PRECISION POINTING QUADRUPOLE MAGNETS IN THE COMPACT LINEAR COLLIDER S. Janssens, P. Fernandez Carmona, K. Artoos, C. Collette, M. Guinchard.
Superconducting final doublet Support A.Jeremie. SC magnet steps Motivation: have an active stabilisation as planned in ILC and CLIC => need to evaluate.
Beam Physics Issues of Main Beam Stabilisation A.Jeremie (LAPP) C.Hauviller (CERN)
CERN, 27-Mar EuCARD NCLinac Task /3/2009.
FP7: EuCARD after a year of preparation… A.Jeremie.
ATF2: final doublet support Andrea JEREMIE B.Bolzon, N.Geffroy, G.Gaillard, J.P.Baud, F.Peltier With constant interaction with colleagues from KEK, SLAC.
NLC - The Next Linear Collider Project Keeping Nanometer Beams Colliding Vibration Stabilization of the Final Doublet Tom Himel SLAC NLC MAC review October.
Test plan for CLIC MB linac quad LAPP option A.Jeremie.
QD0 stabilisation in CLIC CDR A.Jeremie with LAViSta team.
EuCARD NCLinac 9.3 Linac and FF Stabilisation A.Jeremie.
FF Stabilisation A.Jeremie (Summary of things learned and work done at LAPP, CERN, SYMME, Oxford, SLAC)
QD0 Stabilisation L. Brunetti 1, J. Allibe 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, A. Badel 2, R. Le Breton.
CARE05 – November Status report on active stabilisation of a linear collider final focus quadrupole mock-up J. Lottin, ESIA
Vibration issues at Linear Colliders:
CLIC magnets precise positioning
Seismic motion analysis of the SuperB site of Frascati
Active isolation Target : a low cost dedicated table
3: ISI ASCR, Brno University of Technology, Brno, Czech Republic
Laboratories in Annecy working on Vibration Stabilization
Sub-nanometer displacement measurements in seismic sensors.
ATF2: final doublet support
Background With new accelerators delivering beams always smaller and more energetic, requirements for very precise beam alignment become more and more.
A.Jeremie Some drawings from different CLIC’08 presentations
Presentation transcript:

Vibration Stabilization Experimental Results CLIC Main Beam and Final Focus Magnet Stabilization A.Jeremie LAPP: A.Jeremie, S.Vilalte, J.Allibe, G.Balik, L.Brunetti, G.Deleglise, J.P.Baud CERN: K.Artoos, M.Esposito, P.Fernando Carmona, M.Guichard, C.Hauviller, A.Kuzmin, R.Leuxe, R.Moron Ballester SYMME: B.Caron, A.Badel, R.LeBreton ULB: C.Collette Nikhef: S.Jansens

Outline Introduction Final Focus quadrupole stabilization Main Beam Linac quadrupole stabilization Global performance Conclusion and identification of limiting factors 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas2

Introduction Although the two systems shown have different demonstration objectives, the final MDI stabilisation system will probably take the best of both… Or something completely different… 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas3

Why do we need stabilization? 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas4 Beam DNA But Vibration Sources can amount to 100s of nm: Ground motion, Traffic, Lifts, cooling water, ventilation, pumps, machinery, acoustic pressure Transmitted: from the ground through the magnet support, directly to the magnet via beam pipe, cooling pipes, cables... We cannot rely only on the quietness of the site Stabilization techniques have to be developed

Ground motion has an impact on luminosity => especially when beam guiding quadrupole magnets vibrate Micro-seismic peak Technical noise At the IP (mechanical + beam feedback), we aim at 0,1nm at 0,1Hz FFMBQ Vert. 0.2 nm > 4Hz 1.5 nm > 1 Hz Lat. 5 nm > 4 Hz 5 nm >1 Hz <1Hz1Hz<f<100Hz100Hz<f Beam- based feedback Mechanical stabilisation Low Ground motion Andrea JEREMIE LCWS2012 Arlington, Texas525/10/2012 Active Stabilization techniques have been chosen What we are aiming at

What is needed? 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas6 Active Stabilisation means : measure => decide action => act sensorfeedback/-forwardactuator -measure sub- nanometre -low frequency -Large band width ( Hz) -Low noise -Smalest delay for real-time -Small and light => Seismic sensors -real-time feedback -Mutli-channel -simulation possibilities -Fast electronics -Large dynamics( >16bits) -Nanometre displacement -Displace heavy weight -Compact -Real-time response => Piezoelectric actuator Accelerator environment => Magnetic field resistant and radiation hard

2 « similar » active solutions 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas7 4 d.o.f. Main Beam Linac quadrupole demonstration (« CERN ») Final Focus quadrupole demonstration (« Annecy »)

Main Beam quadrupoles Type 1 500mm 100kg Type mm 450kg Final focus quadrupole prototype Andrea JEREMIE LCWS2012 Arlington, Texas8 Permanent magnet (Nd2Fe14B) + coils 25/10/2012 Magnets to be stabilised

Final Focus Stabilization Mechanics Instrumentation Electronics and acquisition Results 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas9

A. Gaddi et al. Add coherence between QD0 and QF1 and reduce band-width on which active stabilisation has to act Elastomeric strips for guidance Piezoelectric actuator below its micrometric screw Lower electrode of the capacitive sensor V-support for the magnet H.Gerwig + N.Siegrist 250mm Additional passive stage directly under active system is also envisaged Andrea JEREMIE LCWS2012 Arlington, Texas1025/10/2012 Final Focus quadrupole: Passive and active solution

Mechanical characteristics 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas11 Intrinsic resonances if change of phase by 90°: other peaks just from boundary conditions => 2 resonance peaks just below 2kHz and near 4kHz. First intrinsic resonance frequency near 2kHz : experimental and theoretical values agree.

Sensors and actuators 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas12 Sensor type Electromagnetic Geophone Piezoelectric Accelerometer Electrochemical Geophone Capacitive Model GURALP CMG-40T GURALP CMG-6T ENDEVCO 86 WILCOXON 731A SP500D CompanyGeosig Brüel & Kjaer MeggittEENTEC Physik Instrumente Output signal Velocity (X,Y,Z)Z accelerationVelocityDistance Sensitivity1600 V/m/s2400 V/m/s10 V/g 2000 V/m/s0.67 V/µm Bandwidth [Hz] [ ][ ][ ][ ][ ][0-3000] Mass [g] <10 Zeros[999, 0, 0, 0][0, 0, 0] Real part < 0 ResolutionResonnanceResponse time Max Force Max displacement 0.08nm65kHZ0.01ms400N8µm PPA10M piezoelectric actuators

Experimental set-up 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas13 Active system with sensors dSPACE real-time system dedicated to rapid prototyping and simulation with 16bits ADC Matlab and dSPACE ControlDesk Amplifiers, filtres, inputs/outputs, signal conditionning

FF stabilization results 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas14 RMS ground at 4 Hz: 5 nm RMS on foot at 4Hz: 0,6nm RMS ratio: 8,3 Attenuation up to 50dB between 1,5-100Hz 1,5Hz-100Hz 0,6 nm 5 nm

Main Beam Linac Stabilization Mechanics Electronics and acquisition Results 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas15

CLIC and CLIC modules 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas16 Type 4: 2m, 400 kgType 1: 0.5 m, 100 kg Type 0: No Main Beam Quad “Modules” of which there are 3992 with CLIC Main Beam Quadrupoles

Main Linac Module with Type 1 quadrupole 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas17

25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas18 Design constraints  Inputs:  Resolution 2 µV  Dynamic range 60 dB  Bandwidth Hz  Output:  Dynamic range 140 dB  Resistance to radiation  Shielding, location, design  Cost (~4000 magnets to be stabilized)  Power restrictions (cooling) MB 9 GeV Courtesy S. Mallows

25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas19

25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas20

Control 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas21 ComponentDelay ADC8 µs Electro-optic transducer 100 ns Optic fiber transmission 5 µs/Km Opto-electric transducer 120 ns DAC3 µs Actuator (20nm single step) 1 µs Typical catalog delay values for the components Control loop delay Stabilization performance 43μs100% 80 μs90% 90 μs80% 100 μs60% 130 μs30% The farther away the control hardware, the less effective the stabilisation system => Need for a local controller Local controller Digital and analog hybrid controller : Digital: flexibility Analog: less latency and higher radiation hardness

Stabilization on Type 1 MBQ 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas22 Water cooling 4 l/min With magnetic field on With hybrid circuit FigureValue 1Hz magnet 0.5 nm 1Hz ground6.3 nm R.m.s. attenuation ratio ~13 1Hz objective1.5 nm

Improved mechanics prototype x-y guide 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas23 X-y guide « blocks » roll + longitudinal direction Increases lateral stiffness by factor 500, increases band width without resonances to ~100 Hz Introduces a stiff support for nano metrology cross check with interferometer

Conclusion for Stabilization Different domains needed: Mechanics (supports, guides, mechanical resonators, …) Instrumentation (sensors, compatibility with active control, …) Electronics (acquisition & control, band-width, resolution,…) Automatics (control, real time simulation …) Accelerator physics (beam simulations, luminosity at Interaction Point…). Sub-nanometre stabilisation peformed validating CLIC stabilisation feasibility: limiting factor are the « noisy » sensors (especially limiting in the 0.8-6Hz range) Integrated luminosity simulations show sub-nanometre beam size at IP and less than 6% luminosity loss (see LCWS 2011 Jeremie and Collette) Next step: tests in accelerator environment 25/10/2012Andrea JEREMIE LCWS2012 Arlington, Texas24