Chapter 7: System models

Slides:



Advertisements
Similar presentations
Chapter 7 System Models.
Advertisements

Chapter 7 System Models.
Lecturer: Sebastian Coope Ashton Building, Room G.18 COMP 201 web-page: Lecture.
(C) Michael Brückner 2005/2006 Software Engineering 1 Course Software Engineering Class 10 / Requirements Engineering, Systems Modeling Michael.
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12Slide 1 Software Design l Objectives To explain how a software design may be represented.
Computer Science Dept. Fall 2003 Object models Object models describe the system in terms of object classes An object class is an abstraction over a set.
Software system modeling
System Modelling System modelling helps the analyst to understand the functionality of the system and models are used to communicate with customers. Different.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System modeling 2.
SWE Introduction to Software Engineering
1 SWE Introduction to Software Engineering Lecture 13 – System Modeling.
©Ian Sommerville 2006Software Engineering, 8th edition. Chapter 8 Slide 1 System models.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System models.
CS 425/625 Software Engineering System Models
Modified from Sommerville’s originalsSoftware Engineering, 7th edition. Chapter 8 Slide 1 System models.
7M701 1 Software Engineering Systems Models Sommerville, Ian (2001) Software Engineering, 6 th edition: Chapter 7 (some items)
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System models September 29, 2008.
©Ian Sommerville 2000Software Engineering, 6/e, Chapter 71 System models l Abstract descriptions of systems whose requirements are being analysed.
Soft. Eng. II, Spr. 2002Dr Driss Kettani, from I. Sommerville1 CSC-3325: Chapter 7 Title : Object Oriented Analysis and Design Reading: I. Sommerville,
Lecture 6 & 7 System Models.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 14 Slide 1 Object-oriented design 2.
©Ian Sommerville 2006Software Engineering, 7th edition. Chapter 14 Slide 1 Object-oriented Design.
Modified from Sommerville’s originalsSoftware Engineering, 7th edition. Chapter 8 Slide 1 System models.
7M822 Software Engineering: System Models 14 September 2009.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System modeling 1.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 11 Slide 1 Architectural Design.
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 1 System models l Abstract descriptions of systems whose requirements are being.
Software Engineering 8. System Models.
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 1 System models l Abstract descriptions of systems whose requirements are being.
CS 310 Ch8: System models Abstract descriptions of systems being analyzed to help the analyst understand the system functionality communicate with customers.
Chapter 4 System Models A description of the various models that can be used to specify software systems.
System models. System modelling System modelling helps the analyst to understand the functionality of the system and models are used to communicate with.
System Models Hoang Huu Hanh, Hue University hanh-at-hueuni.edu.vn Lecture 6 & 7.
System models Abstract descriptions of systems whose requirements are being analysed Abstract descriptions of systems whose requirements are being analysed.
SYSTEM MODELS MUHAMMAD RIZWAN. Objectives  To explain why the context of a system should be modelled as part of the RE process  To describe behavioural.
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10Slide 1 Architectural Design l Establishing the overall structure of a software system.
©Ian Sommerville 1995/2000 (Modified by Spiros Mancoridis 1999) Software Engineering, 6th edition. Chapter 7 Slide 1 System models l Abstract descriptions.
©Ian Sommerville 2006Software Engineering, 8th edition. Chapter 8 Slide 1 Object-oriented and Structured System Models.
October 5, 2010COMS W41561 COMS W4156: Advanced Software Engineering Prof. Gail Kaiser
Chapter 7 System models.
Slide 1 System models. Slide 2 Objectives l To explain why the context of a system should be modelled as part of the RE process l To describe behavioural.
System models l Abstract descriptions of systems whose requirements are being analysed.
Pertemuan 19 PEMODELAN SISTEM Matakuliah: D0174/ Pemodelan Sistem dan Simulasi Tahun: Tahun 2009.
CS 4310: Software Engineering Lecture 4 System Modeling The Analysis Stage.
Modified by Juan M. Gomez Software Engineering, 6th edition. Chapter 7 Slide 1 Chapter 7 System Models.
Software Engineering, 8th edition Chapter 8 1 Courtesy: ©Ian Somerville 2006 April 06 th, 2009 Lecture # 13 System models.
Rekayasa Perangkat Lunak (Software Engineering) M.Sukrisno Mardiyanto Kuliah Umum Universitas Dian Nuswantoro Semarang, 16 Oktober 2008.
Sommerville 2004,Mejia-Alvarez 2009Software Engineering, 7th edition. Chapter 8 Slide 1 System models.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 14 Slide 1 Object-oriented Design.
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 1 Chapter 7 System Models.
Lecture 1: Introduction to Software Engineering WXGE6103 Software Engineering Process and Practice Object-oriented Design.
SWEN 5231 FORMAL METHODS Slide 1 System models u Abstract presentations of systems whose requirements are being analyzed.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System models.
Specification Techniques. System models are abstract descriptions of systems whose requirements are being analyzed Objectives  To explain why specification.
Chapter 6: System Models Omar Meqdadi SE 273 Lecture 6 Department of Computer Science and Software Engineering University of Wisconsin-Platteville.
 To explain why the context of a system should be modelled as part of the RE process  To describe behavioural modelling, data modelling and object modelling.
September 15, 2009COMS W41561 COMS W4156: Advanced Software Engineering Prof. Gail Kaiser
1 SWE Introduction to Software Engineering Lecture 14 – System Modeling.
© 2000 Franz Kurfess System Design Methods 1 CSC 205: Software Engineering I Dr. Franz J. Kurfess Computer Science Department Cal Poly.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System models.
Engineering, 7th edition. Chapter 8 Slide 1 System models.
CompSci 280 S Introduction to Software Development
Design Review.
Software Engineering Lecture 4 System Modeling The Analysis Stage.
Object-oriented and Structured System Models
Abstract descriptions of systems whose requirements are being analysed
IS301 – Software Engineering V:
System models October 5, 2005.
Subject Name: SOFTWARE ENGINEERING Subject Code:10IS51
Presentation transcript:

Chapter 7: System models Abstract descriptions of systems whose requirements are being analysed Let’s face it .. they are diagrams!

System modelling Different models present the system from different perspectives External perspective showing the system’s context or environment Behavioural perspective showing the behaviour of the system Structural perspective showing the system or data architecture

Structured methods Structured methods incorporate system modelling as an inherent part of the method Methods define a set of models, a process for deriving these models and rules and guidelines that should apply to the models CASE tools support system modelling as part of a structured method

Context models Context models are used to illustrate the boundaries of a system

The context of an ATM system

Behavioural models Behavioural models are used to describe the overall behaviour of a system Two types of behavioural model are shown here Data processing models that show how data is processed as it moves through the system State machine models that show the systems response to events

Order processing DFD

Data Flow Diagrams Show the processing steps as data flows through a system Robust: Analysis: Used to model the system’s data processing Design: Used to describe module interaction Flow of data .. not control Popular and well supported. Tools allow hierarchical (7 +/- 2??) automatic consistency, completeness checking

CASE toolset DFD

State machine models These model the behaviour of the system in response to external and internal events They show the system’s responses to stimuli so are often used for modelling real-time systems State machine models show system states as nodes and events as arcs between these nodes. When an event occurs, the system moves from one state to another

Microwave oven model

Statecharts Statecharts are an integral part of the UML Allow the decomposition of a model into sub-models (see following slide) A brief description of the actions is included following the ‘do’ in each state Can be complemented by tables describing the states and the stimuli

Microwave oven operation

Semantic data models Used to describe the logical structure of data processed by the system Entity-relation-attribute model sets out the entities in the system, the relationships between these entities and the entity attributes Widely used in database design. Can readily be implemented using relational databases No specific notation provided in the UML but objects and associations can be used

Software design semantic model

Data dictionaries Data dictionaries are lists of all of the names used in the system models. Descriptions of the entities, relationships and attributes are also included Advantages Support name management and avoid duplication Store of organisational knowledge linking analysis, design and implementation Many CASE workbenches support data dictionaries

Data dictionary entries

Object models Object models describe the system in terms of object classes An object class is an abstraction over a set of objects with common attributes and the services (operations) provided by each object Various object models may be produced Inheritance models Aggregation models Interaction models

Object models Natural ways of reflecting the real-world entities manipulated by the system More abstract entities are more difficult to model using this approach Object class identification is recognised as a difficult process requiring a deep understanding of the application domain Object classes reflecting domain entities are reusable across systems

Inheritance models Organise the domain object classes into a hierarchy Classes at the top of the hierarchy reflect the common features of all classes Object classes inherit their attributes and services from one or more super-classes. these may then be specialised as necessary Class hierarchy design is a difficult process if duplication in different branches is to be avoided

The Unified Modeling Language Devised by the developers of widely used object-oriented analysis and design methods Has become an effective standard for object-oriented modelling Notation Object classes are rectangles with the name at the top, attributes in the middle section and operations in the bottom section Relationships between object classes (known as associations) are shown as lines linking objects Inheritance is referred to as generalisation and is shown ‘upwards’ rather than ‘downwards’ in a hierarchy

Library class hierarchy

Object aggregation