Lecture 30 Point-group symmetry III (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.

Slides:



Advertisements
Similar presentations
Lecture 14 Time-independent perturbation theory (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
Advertisements

Group Theory II.
Lecture 5 The meaning of wave function (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Lecture 19 Atomic spectra (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made.
Lecture 32 General issues of spectroscopies. II (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
Ch 10 Lecture 3 Angular Overlap
Lecture 30 Point-group symmetry III. Non-Abelian groups and chemical applications of symmetry In this lecture, we learn non-Abelian point groups and the.
Introductory concepts: Symmetry
Lecture 11 Particle on a ring (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and.
Lecture 18 Hydrogen’s wave functions and energies (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has.
Lecture 28 Point-group symmetry I
Lecture 36 Electronic spectroscopy (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Lecture 22 Electronic structure of Coordination Compounds 1) Crystal Field Theory Considers only electrostatic interactions between the ligands and the.
Lecture 23 Born-Oppenheimer approximation (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Slide 2/22 CHEM2402/2912/2916 [Part 2] A/Prof Adam Bridgeman Room: Office.
Lecture 17. Jahn-Teller distortion and coordination number four
Coordination Chemistry Bonding in transition-metal complexes.
Lecture 4. Point group Symmetry operations Characters +1 symmetric behavior -1 antisymmetric Mülliken symbols Each row is an irreducible representation.
Placing electrons in d orbitals (strong vs weak field)
Lecture 28 Electronic Spectra of Coordination Compounds MLx (x = 4,6) 1) Terms of a free d2 metal atom The total number of microstates for an isolated.
Lecture 17 Molecular Orbital Theory 1) Molecular Orbitals of AH x (x = 3, 4, 6) MO diagrams can be used on a qualitative basis to understand the shape.
6  ligands x 2e each 12  bonding e “ligand character” “d 0 -d 10 electrons” non bonding anti bonding “metal character” ML 6  -only bonding The bonding.
Lecture 5.
Lecture 3.
Coordination Chemistry Bonding in transition-metal complexes.
Lecture 6.
How Chemists Use Group Theory Created by Anne K. Bentley, Lewis & Clark College and posted on VIPEr ( on March.
Transition Metals, Compounds and Complexes or
Lecture 13 Space quantization and spin (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Lecture 14 APPLICATIONS OF GROUP THEORY 1) Symmetry of atomic orbitals
Lecture 26 MO’s of Coordination Compounds MLx (x = 4,6) 1) Octahedral complexes with M-L s-bonds only Consider an example of an octahedral complex.
Lecture 2 Wave-particle duality (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and.
Lecture 8 Particle in a box (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made.
Lecture 22 Spin-orbit coupling
Lecture 4 Partial differentiation (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Lecture 3 The Schrödinger equation (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Lecture 1 Discretization of energies (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Coordination Chemistry:
Lecture 7 Information in wave function. II. (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
Lecture 17 Hydrogenic atom (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made.
Lecture 10 Harmonic oscillator (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and.
Lecture 9 Particle in a rectangular well (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Group theory 101 Suggested reading: Landau & Lifshits, Quantum Mechanics, Ch. 12 Tinkham, Group Theory and Quantum Mechanics Dresselhaus, Dresselhaus,
Crystal Field Theory i) Separate metal and ligands have high energy ii) Coordinated Metal - ligand get stabilized iii) Metal and Ligands act as point charges.
BRAIN: Brain Research through Advancing Innovative Neurotechnologies Announced by President Obama in February 2013 as part of FY 2014 Budget Request to.
Chapter 6: A Qualitative Theory of Molecular Organic Photochemistry December 5, 2002 Larisa Mikelsons.
Operating Systems AOIT Principles of Information Technology.
1 Physical Chemistry III (728342) Chapter 5: Molecular Symmetry Piti Treesukol Kasetsart University Kamphaeng Saen Campus.
Synthesis How do I make it? Modeling How do I explain it?
Lecture 16 Tunneling (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made available.
Symmetry and Introduction to Group Theory
Lecture 33 Rotational spectroscopy: energies (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
Computing and Communications and Biology Molecular Communication; Biological Communications Technology Workshop Arlington, VA 20 February 2008 Jeannette.
Lecture 24 Valence bond theory (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and.
Organizational Structure Coordination and Leadership Group (CLG) AD Council BIOCISEEHRENGGEOMPSSBE OIIA Charge: Coordinating NSF’s cyberinfrastructure.
Important concepts in IR spectroscopy
Lecture 29 Point-group symmetry II (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Lecture 25 Molecular orbital theory I (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Lecture 20 Helium and heavier atoms
Chem. 1B – 11/19 Lecture. Announcements I Mastering Chemistry –Chapter 24 Assignment due Nov. 29th Lab –Experiment 10 due; Starting Experiment 14 (last.
Lecture 34 Rotational spectroscopy: intensities (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
Lecture 36 Electronic spectroscopy. Electronic spectroscopy Transition energies between electronic states fall in the range of UV/vis photons. UV/vis.
Lecture 21 More on singlet and triplet helium (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
√. z y x First let ’ s consider the sulfur orbitals we need to consider their symmetry and, we need to consider their energy The fluorines lie along the.
Localization by TDOA ©Thomas Haenselmann – Department of Computer Science IV – University of Mannheim Lecture on Sensor Networks Historical Development.
Coordination Chemistry: Bonding Theories
Lecture 15 Time-dependent perturbation theory
Lecture 25 Molecular orbital theory I
Lecture 21 More on singlet and triplet helium
This material is based upon work supported by the National Science Foundation under Grant #XXXXXX. Any opinions, findings, and conclusions or recommendations.
Presentation transcript:

Lecture 30 Point-group symmetry III (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made available online by work supported jointly by University of Illinois, the National Science Foundation under Grant CHE (CAREER), and the Camille & Henry Dreyfus Foundation, Inc. through the Camille Dreyfus Teacher-Scholar program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsoring agencies.

Non-Abelian groups and chemical applications of symmetry In this lecture, we learn non-Abelian point groups and the decomposition of a product of irreps. We also apply the symmetry theory to chemistry problems.

Degeneracy The particle in a square well (D 4h ) has doubly degenerate wave functions.

The D 4h character table (h = 16) D 4h E2C42C4 C2C2 2C2’2C2’2C2”2C2”i2S42S4 σhσh 2σv2σv 2σd2σd A 1g A 2g 111−1 111 B 1g 1− B 2g 1− EgEg 20− A 1u 11111−1 A 2u 111−1 11 B 1u 1− B 2u 1− EuEu 20−

C 3v : another non-Abelian group C 3v, 3mE2C32C3 3σv3σv h = 6 A1A1 111z, z 2, x 2 +y 2 A2A2 11−1 E2 0(x, y), (xy, x 2 −y 2 ), (zx, yz)

C 3v : expanded character table C 3v, 3mEC3C3 C32C32 σvσv σvσv σvσv h = 6 A1A z, z 2, x 2 +y 2 A2A2 111−1 E2 000(x, y), (xy, x 2 −y 2 ), (zx, yz) C 3v, 3mE2C32C3 3σv3σv h = 6 A1A1 111z, z 2, x 2 +y 2 A2A2 11−1 E2 0(x, y), (xy, x 2 −y 2 ), (zx, yz)

Integral of degenerate orbitals C 3v, 3mEC3C3 C32C32 σvσv σvσv σvσv h = 6 A1A z, z 2, x 2 +y 2 A2A2 111−1 E2 000(x, y), (xy, x 2 −y 2 ), (zx, yz)

What is E ✕ E ? What is the irrep for this set of characters? C 3v, 3mEC3C3 C32C32 σvσv σvσv σvσv h = 6 A1A z, z 2, x 2 +y 2 A2A2 111−1 E2 000(x, y), (xy, x 2 −y 2 ), (zx, yz) E ✕ E It is not a single irrep. It is a linear combination of irreps

Superposition principle (review) Eigenfunctions of a Hermitian operator are complete. Eigenfunctions of a Hermitian operator are orthogonal.

Decomposition An irrep is a simultaneous eigenfunction of all symmetry operations.

The character vector of A 1 is normalized. The character vector of E is normalized. The character vectors of A 1 and E are orthogonal. Orthonormal character vectors C 3v, 3mEC3C3 C32C32 σvσv σvσv σvσv h = 6 A1A z, z 2, x 2 +y 2 A2A2 111−1 E2 000(x, y), (xy, x 2 −y 2 ), (zx, yz)

The contribution (c A1 ) of A 1 : The contribution (c A2 ) of A 2 : The contribution (c E ) of E: Decomposition C 3v, 3mEC3C3 C32C32 σvσv σvσv σvσv h = 6 A1A z, z 2, x 2 +y 2 A2A2 111−1 E2 000(x, y), (xy, x 2 −y 2 ), (zx, yz) E ✕ E Degeneracy = 2 × 2 =

Chemical applications While the primary benefit of point-group symmetry lies in our ability to know whether some integrals are zero by symmetry, there are other chemical concepts derived from symmetry. We discuss the following three: Woodward-Hoffmann rule Crystal field theory Jahn-Teller distortion

Woodward-Hoffmann rule The photo and thermal pericyclic reactions yield different isomers of cyclobutene. photochemical thermal

Woodward-Hoffmann rule What are the symmetry groups to which these reactions A and B belong? photochemical / disrotary / C s thermal / conrotary / C 2 σ C2C2

Woodward-Hoffmann rule higher energy occupied higher energy dcbahgfe occupied ReactantProduct Processabcdefgh Photochemical / C s A”A’A”A’A” A’ Thermal / C 2 ABABBABA Processabcdefgh Photochemical / C s A”A’A”A’A” A’ Thermal / C 2 ABABBABA “Conservation of orbital symmetry”

Crystal field theory Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. [Ni(NH 3 ) 6 ] 2+, [Ni(en) 3 ] 2+, [NiCl 4 ] 2−, [Ni(H 2 O) 6 ] 2+

Crystal field theory d orbitals d xy, d yz, d zx d z2, d x2−y2 TdTd OhOh spherical E T2T2 EgEg T 2g

NiCl 4 2− belongs to T d d orbitals d xy, d yz, d zx d z2, d x2−y2 TdTd spherical TdTd E8C38C3 3C23C2 6S46S4 6σd6σd h = 24 A1A x2+y2+z2x2+y2+z2 A2A2 111−1 E2 200(z 2, x 2 −y 2 ) T1T1 30−11 T2T2 30 1(xy, yz, zx) E T2T2 dz2dz2 + + d xy CT transition allowed

Ni(OH 2 ) 6 2+ belongs to O h d orbitals d xy, d yz, d zx d z2, d x2−y2 OhOh spherical OhOh E8C28C2 6C 2 6C46C4 …h = 48 A 1g 1111x2+y2+z2x2+y2+z2 … EgEg 2−100(z 2, x 2 −y 2 ) … T 2g 301−1(xy, yz, zx) … EgEg T 2g dz2dz2 d xy + + d-d transition forbidden

Jahn-Teller distortion OhOh D4hD4h

d xy, d yz, d zx d z2, d x2−y2 (3d) 8 d xy, d yz, d zx d z2, d x2−y2 (3d) 9 Hunt’s ruleno Hunt’s rule

Cu(OH 2 ) 6 2+ belongs to D 4h d xy, d yz, d zx d z2, d x2−y2 OhOh D4hD4h D4hD4h E2C42C4 C2C2 2C2’2C2’…h = 48 A 1g 1111x 2 +y 2, z 2 … B 1g 1−111x2−y2x2−y2 B 2g 1−11 xy EgEg 20−20xz, yz … EgEg T 2g d zx d xy + + d x2−y2 dz2dz2 d xy d yz, d zx EgEg B 2g B 1g A 1g

Jahn-Teller distortion In Cu(OH 2 ) 6 2+, the distortion lowers the energy of d electrons, but raises the energy of Cu-O bonds. The spontaneous distortion occurs. In Ni(OH 2 ) 6 2+, the distortion lowers the energy of d electrons, but loses the spin correlation as well as raises the energy of Ni-O bonds. The distortion does not occur.

Summary We have learned how to apply the symmetry theory in the case of molecules with non- Abelian symmetry. We have learned the decomposition of characters into irreps. We have discussed three chemical concepts derived from symmetry, which are Woodward-Hoffmann rule, crystal field theory, and Jahn-Teller distortion.