Chapter 2 Functions and Graphs Section 1 Functions.

Slides:



Advertisements
Similar presentations
2-1: Graphing Linear Relations and Functions
Advertisements

FUNCTIONS Section 3.1.
Chapter 2 Functions and Graphs
CHAPTER 1: Graphs, Functions, and Models
Chapter 2 Functions and Graphs Section 1 Functions.
Chapter 2 Functions and Graphs
Chapter 2 Functions and Graphs
2.1 Functions and their Graphs p. 67. Assignment Pp #5-48 all.
Learning Objectives for Section 2.1 Functions
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Chapter 2 Review Important Terms, Symbols, Concepts 2.1. Functions Point-by-point plotting may be used to.
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 8-4 An Introduction to Functions: Linear Functions, Applications, and Models.
1.1 Relations and Functions
Economic Models, Functions, Logs, Exponents, e
Chapter 2 Functions and Graphs
Chapter 1 Functions and Linear Models Sections 1.3 and 1.4.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
2 Graphs and Functions © 2008 Pearson Addison-Wesley. All rights reserved Sections 2.1–2.4.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 2 Graphs and Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
1 OCF Functions: Concepts and Notations MCR3U - Santowski.
Chapter 1 A Beginning Library of Elementary Functions
1 Functions and Linear Models Chapter 1 Functions: Numerical, Algebraic and Graphical Linear Functions Linear Models Linear Regression Lecture 1.
Functions: Definitions and Notation 1.3 – 1.4 P (text) Pages (pdf)
Formalizing Relations and Functions
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
1  The Cartesian Coordinate System  Straight Lines  Linear Functions and Mathematical Models  Intersection of Straight Lines  The Method of Least.
Section 1.4 Intersection of Straight Lines. Intersection Point of Two Lines Given the two lines m 1,m 2, b 1, and b 2 are constants Find a point (x, y)
1-2 & 1-3 Functions and Models
Mathematics for Business and Economics - I
Copyright © Cengage Learning. All rights reserved. 1 Functions and Their Graphs.
Relations Relation: a set of ordered pairs Domain: the set of x-coordinates, independent Range: the set of y-coordinates, dependent When writing the domain.
College Algebra Acosta/Karwoski. CHAPTER 1 linear equations/functions.
Sections 4.1 and 4.2 Linear Functions and Their Properties Linear Models.
1.1 Functions This section deals with the topic of functions, one of the most important topics in all of mathematics. Let’s discuss the idea of the Cartesian.
Copyright © Cengage Learning. All rights reserved. 1 Functions and Their Graphs.
MAT 213 Brief Calculus Section 1.1 Models, Functions and Graphs.
Dear Power point User, This power point will be best viewed as a slideshow. At the top of the page click on slideshow, then click from the beginning.
Functions and Their Representations
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 2 Graphs and Functions.
Sections 7.1, 7.2 Sections 7.1, 7.2 Functions and Domain.
Warm Up Use the graph for Problems 1–2. 1. List the x-coordinates of the points. 2. List the y-coordinates of the points. –2, 0, 3, 5 3, 4, 1, 0.
Section 1.2 Functions and Graphs. Relation A relation is a correspondence between the first set, called the domain, and a second set, called the range,
A relation is a correspondence between two sets. If x and y are two elements in these sets and if a relation exists between x and y, then x corresponds.
CHAPTER 1: FUNCTIONS, GRAPHS, AND MODELS; LINEAR FUNCTIONS Section 1.1: Functions and Models 1.
2 Graphs and Functions © 2008 Pearson Addison-Wesley. All rights reserved Sections 2.1–2.4.
Functions Objective: To determine whether relations are functions.
2.1 Functions and their Graphs Standard: Students will understand that when a element in the domain is mapped to a unique element in the range, the relation.
Definition Function: A function is a relation that assigns exactly one value of the range to each of the values in the domain. *Each x value must be associated.
Graphs and Functions Chapter 5. Introduction  We will build on our knowledge of equations by relating them to graphs.  We will learn to interpret graphs.
Copyright © Cengage Learning. All rights reserved. Graphs; Equations of Lines; Functions; Variation 3.
Chapter 2: Linear Equations and Functions Section 2.1: Represent Relations and Functions.
Section 7.6 Functions Math in Our World. Learning Objectives  Identify functions.  Write functions in function notation.  Evaluate functions.  Find.
Notes:Relations and Functions Section 1-6 Student Objective: The students will be able to identify relations and functions and evaluate functions. 1.Definitions:
1 Copyright © 2015, 2011, and 2008 Pearson Education, Inc. Chapter 1 Functions and Graphs Section 1 Functions.
Solving Linear Equations
Chapter 2 Functions and Graphs
CHAPTER 1 Linear Equations Section 1.1 p1.
Section 1.2 Functions and Graphs.
Splash Screen.
Chapter 2 Functions and Graphs
Linear Relations and Functions
Chapter 2 Functions and Graphs
Copyright © 2013, 2009, 2005 Pearson Education. Inc.
Chapter Functions.
Describe subsets of real numbers.
PreCalculus 1st Semester
Section 3.6 Functions.
Splash Screen.
Graphs, Linear Equations, and Functions
Section 5.2 Functions.
Presentation transcript:

Chapter 2 Functions and Graphs Section 1 Functions

2 Graphing an Equation  To sketch the graph an equation in x and y, we need to find ordered pairs that solve the equation and plot the ordered pairs on a grid. This process is called point-by-point plotting. For example, let’s plot the graph of the equation

3 Graphing an Equation: Making a Table of Ordered Pairs  Make a table of ordered pairs that satisfy the equation xy –3(–3) 2 +2 = 11 –2(–2) 2 +2 = 6 –1(–1) 2 +2 = 6 0(0) 2 +2 = 2 1(1) 2 +2 = 3 2(2) 2 +2 = 6

4 Graphing an Equation: Plotting the points  Next, plot the points and connect them with a smooth curve. You may need to plot additional points to see the pattern formed.

5 Functions  The previous graph is the graph of a function. The idea of a function is this: a correspondence between two sets D and R such that to each element of the first set, D, there corresponds one and only one element of the second set, R.  The first set is called the domain, and the set of corresponding elements in the second set is called the range. For example, the cost of a pizza (C) is related to the size of the pizza. A 10 inch diameter pizza costs $9.00, while a 16 inch diameter pizza costs $12.00.

6 Function Definition  You can visualize a function by the following diagram which shows a correspondence between two sets: D, the domain of the function, gives the diameter of pizzas, and R, the range of the function gives the cost of the pizza domain D range R

7 Functions Specified by Equations  If in an equation in two variables, we get exactly one output (value for the dependent variable) for each input (value for the independent variable), then the equation specifies a function. The graph of such a function is just the graph of the specifying equation.  If we get more than one output for a given input, the equation does not specify a function.

8 Functions Specified by Equations  Consider the equation that was graphed on a previous slide –2 2 Input: x = –2 Process: square (–2), then subtract 2 Output: result is 2 (–2,2) is an ordered pair of the function.

9 Vertical Line Test for a Function If you have the graph of an equation, there is an easy way to determine if it is the graph of an function. It is called the vertical line test which states that: An equation specifies a function if each vertical line in the coordinate system passes through at most one point on the graph of the equation. If any vertical line passes through two or more points on the graph of an equation, then the equation does not specify a function.

10 Vertical Line Test for a Function (continued) This graph is not the graph of a function because you can draw a vertical line which crosses it twice. This is the graph of a function because any vertical line crosses only once.

11 Function Notation  The following notation is used to describe functions. The variable y will now be called f (x).  This is read as “ f of x” and simply means the y coordinate of the function corresponding to a given x value. Our previous equation can now be expressed as

12 Function Evaluation  Consider our function  What does f (–3) mean?

13 Function Evaluation  Consider our function  What does f (–3) mean? Replace x with the value –3 and evaluate the expression  The result is 11. This means that the point (–3,11) is on the graph of the function.

14 Some Examples  1.

15 Domain of a Function  Consider which is not a real number.  Question: for what values of x is the function defined?

16 Domain of a Function  Answer: is defined only when the radicand (3x – 2) is equal to or greater than zero. This implies that

17 Domain of a Function (continued)  Therefore, the domain of our function is the set of real numbers that are greater than or equal to 2/3.  Example: Find the domain of the function

18 Domain of a Function (continued)  Therefore, the domain of our function is the set of real numbers that are greater than or equal to 2/3.  Example: Find the domain of the function  Answer:

19 Domain of a Function: Another Example  Find the domain of

20 Domain of a Function: Another Example  Find the domain of  In this case, the function is defined for all values of x except where the denominator of the fraction is zero. This means all real numbers x except 5/3.

21 Mathematical Modeling The price-demand function for a company is given by where x represents the number of items and P(x) represents the price of the item. Determine the revenue function and find the revenue generated if 50 items are sold.

22 Solution Revenue = Price ∙ Quantity, so R(x)= p(x) ∙ x = (1000 – 5x) ∙ x When 50 items are sold, x = 50, so we will evaluate the revenue function at x = 50: The domain of the function has already been specified. We are told that

23 Break-Even and Profit-Loss Analysis  Any manufacturing company has costs C and revenues R.  The company will have a loss if R C.  Costs include fixed costs such as plant overhead, etc. and variable costs, which are dependent on the number of items produced. C = a + bx (x is the number of items produced)

24 Break-Even and Profit-Loss Analysis (continued)  Price-demand functions, usually determined by financial departments, play an important role in profit-loss analysis. p = m – nx (x is the number of items than can be sold at $p per item.)  The revenue function is R = (number of items sold) ∙ (price per item) = xp = x(m – nx)  The profit function is P = R – C = x(m – nx) – (a + bx)

25 Example of Profit-Loss Analysis A company manufactures notebook computers. Its marketing research department has determined that the data is modeled by the price-demand function p(x) = 2,000 – 60x, when 1 < x < 25, (x is in thousands). What is the company’s revenue function and what is its domain?

26 Answer to Revenue Problem Since Revenue = Price ∙ Quantity, The domain of this function is the same as the domain of the price-demand function, which is 1 ≤ x ≤ 25 (in thousands.)

27 Profit Problem The financial department for the company in the preceding problem has established the following cost function for producing and selling x thousand notebook computers: C(x) = 4, x (x is in thousand dollars). Write a profit function for producing and selling x thousand notebook computers, and indicate the domain of this function.

28 Answer to Profit Problem Since Profit = Revenue – Cost, and our revenue function from the preceding problem was R(x) = 2000x – 60x 2, P(x) = R(x) – C(x) = 2000x – 60x 2 – ( x) = –60x x – The domain of this function is the same as the domain of the original price-demand function, 1< x < 25 (in thousands.) 5000 Thousand dollars 25 Thousand cameras