LAL, CELIA, KEK, LMA, INFN, Alsyom, Amplitude

Slides:



Advertisements
Similar presentations
Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
Advertisements

A_RD_01 Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay French Labs. :
Compton Experiment at the ATF Update since TILC09 Positron Workshop Durham 28-October-2009 Junji Urakawa instead of T.Takahashi KEK for collaborators.
Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay Japanese Labs. : KEK, ATF.
Compton based Polarized Positrons Source for ILC V. Yakimenko, I. Pogorelsky BNL Collaboration meeting, Beijing, January 29-February1, 2006.
Status of g ray generation at KEK-ATF ► Introduction ► Status of the cavity R&D ► Out Look French Labs. : LAL (Orsay) in Collaboration with CELIA (Laser.
Compton Linac for Polarized Positrons V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009.
High finesse multi-mirror optical cavities with feedback 1.Fabry-Perot cavity in cw mode: feedback & optical issues 1.Comparison with Sapphire parameters.
Gamma Beam Systems a simple introduction. Purpose of the machine Deliver a high performance photon beam: Variable energy Highly polarized High intensity.
Outline 1.ERL facility for gamma-ray production [A. Valloni] 2.ERL facility - Tracking Simulations [D. Pellegrini] 3.SC magnet quench tests [V. Chetvertkova]
Overview of enhancement cavity work at LAL/Orsay  INTRO:  Optical cavity developments at LAL  Results on optical cavity in picosecond regime  Polarised.
Installation of a Four-mirror Fabry-Perot cavity at ATF 1.Our setup/goal 2.Why 4 mirrors ? 3.The ATF 4-mirror cavity 4.The optical scheme 5.The laser/cavity.
Experimental Effort for Alternative Schemes Experimental Effort for Alternative Schemes Hirotaka Shimizu Hiroshima University ILC2007 at DESY Hamburg.
1 Junji Urakawa (KEK, Japan) at Sapphire day, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
Fabry-Perot cavity for the Compton polarimeter Goal:  5MHz repetition rate & small diameter ≈ 50  m (c.f. P. Schuler’s talks)
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
Feedback R&D for Optical Cavity Ryuta TANAKA (Hiroshima univ.) 19 th Feb 2013 SAPPHiRE DAY.
T.Takahashi Hiroshima γγ state of the art and research plan, what system tests can be done at ATF2, ESA T.Takahashi Hiroshima Univ. March GDE BDS/ACFA.
1 st October Linear Collider workshop The CLIC/ILC common work plan progress J. Clarke and L. Rinolfi.
Low Emittance RF Gun Developments for PAL-XFEL
Status of the optical cavity R&D at ATF IWLC2010 Geneva 20-October-2010 T.Takahashi Hiroshima University for collaborators.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
WG3a Sources Summary Jim Clarke on behalf of John Sheppard, Masao Kuriki, Philippe Piot and all the contributors to WG3a.
A.Variola Motivations…from D.Hitlin Talk The polarized positron source.
15 th October CLIC workshop The CLIC/ILC common issues for the sources Jim Clarke and Louis Rinolfi.
X-RAY LIGHT SOURCE BY INVERSE COMPTON SCATTERING OF CSR FLS Mar. 6 Miho Shimada High Energy Research Accelerator Organization, KEK.
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
A.Variola LCWS Bejing ERL Compton Scheme Status of the Orsay activity.
Electron Sources for ERLs – Requirements and First Ideas Andrew Burrill FLS 2012 “The workshop is intended to discuss technologies appropriate for a next.
Status of the Compton Experiment at the ATF TILC09 18-April-2009 T.Takahashi Hiroshima University for collaborators.
Compton Experiment at ATF DR 2009 Summary and Plan ATF2 Project Meeting 15-Dec-2009 T. Omori (KEK) for collaborators.
T.Takahashi Hiroshima /11/5 Tohru Takahashi Hiroshima University 高橋 徹 広島大学.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
Photon beam generation at PERLE
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Conventional source developments (300Hz Linac scheme and the cost, Part-II) Junji Urakawa, KEK PosiPol-2012 at DESY Zeuthen Contents : 0. Short review.
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
Laser source for PLC Optical R&D for Laser beam - electron beam Compton scattering Technology 1.Laser Request for PLC 2.Technical solutions  Non linear.
Laser source for ThomX Optical R&D for Laser beam - electron beam Compton scattering Technology 1.Interest for Compton scattering 2.Laser beam for ThomX.
Laser electron beam x 30 Multi-Compton chamber system γ-ray cm Conceptual design in 2005 Snowmass X 5 at present Big progress During R&D.
GDE FRANCE Why High brillance gun is good for the ERL scheme? And SC GUN? Alessandro Variola For the L.A.L. Orsay group.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
Advanced Compton Sources (for Nuclear Photonics) Luca Serafini – INFN/Milan Physics and Technology of Compton/Thomson X/  rays Sources - weak Compton.
THE COMPACT X-RAY SOURCE THOMX The machine Applications Some technical issues (optics)
A.Variola LCWS07 DESY-Hambourg Posipol A.Variola LCWS07 DESY-Hambourg Some Posipol 2007 numbers ~ 55 inscriptions 3 days workshop 8 sponsors Different.
Compton based Polarized Positrons Source for ILC V. Yakimenko 1, D. Cline 2, Ya. Fukui 2, V. Litvinenko 1, I. Pogorelsky 1, S. Roychowdhury 3 1 BNL, 2.
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
R&D description Schedule
Recent developments of optical cavity systems for advanced photon sources based on Compton backscattering A. Martens, F. Zomer, P. Favier, K. Cassou,
Goals Technical solution  Fabry-Perot optical resonator
Photon beam generation at PERLE
High power high energy ultrafast fiber amplifiers
Beam-beam effects in eRHIC and MeRHIC
CLIC Damping ring beam transfer systems
Conveners: L.Serafini,F. Villa
Injection facility for Novosibirsk Super Charm Tau Factory
MIT Compact X-ray Source
Pol. positron generation scheme for ILC
The Cornell High Brightness Injector
Compton effect and ThomX What possible future?
ERL accelerator review. Parameters for a Compton source
Development of Optical Resonant Cavities for laser-Compton Scattering
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Status of CTC activities for the Damping rings
Pierre Favier Laboratoire de l’Accélérateur Linéaire
DANE Compton ring for ultra high flux photons in the 100 KeV-10 MeV energy range D. Alesini (LNF, INFN Frascati)
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Presentation transcript:

LAL, CELIA, KEK, LMA, INFN, Alsyom, Amplitude Developments of optical resonators and optical recirculators for Compton X/γ ray machines Aurélien MARTENS for MightyLaser, ThomX, ELI-NP-GS LAL, CELIA, KEK, LMA, INFN, Alsyom, Amplitude PLIC@LAL MightyLaser ThomX ELI-NP-GS

Applications of Compton scattering: e- + hν → e- + X/γ Compton energy threshold for λlaser = 1µm EX/γ [MeV] Ee- [MeV] ELI-NP-GS MightyLaser ThomX ~10-1MeV Low energy applications Radiography & Radiotherapy Museology … ~1MeV-100MeV Nuclear fluorescence Nuclear physics Nuclear survey Nuclear waste management … >100MeV High energy applications Compton polarimeter gg collider Polarised positron source … Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

Examples of ICS sources Laser RF Gun LINAC Electron bunches Compton photon LINAC solution  lower repetition rate but  better beam quality (0.5% BW, 109 ph./s) RF Gun LINAC Electron bunch Ring solution  higher repetition rate but  lower beam quality (few % BW, 1013 ph./s) Storage ring Compton photon Laser Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

Storage ring solution Laser RF Gun LINAC Electron bunches Compton photon LINAC solution  lower repetition rate but  better beam quality (0.5% BW, 109 ph./s) RF Gun LINAC Electron bunch Ring solution  higher repetition rate but  lower beam quality (few % BW, 1013 ph./s) Storage ring Compton photon Laser Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ThomX ~50 MeV ring, 1 nC → complicated electron dynamics 17.8 MHz repetition rate 4-mirror planar optical cavity 1011 - 1013 γ/s 1%-10% spectral bandwidth (w/ diaphragm) 10 mrad divergence w/o diaphragm Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ThomX R&D challenges Oscillator phase-noise control is critical: Δ𝜈 𝜈𝑜𝑝𝑡. =3 . 10 −12 Δ𝜈 ~ 1𝑘𝐻𝑧 Choice of oscillator requires R&D: Commercial vs home made (CELIA) lasers R&D on numeric feedback to lock the oscillator on: the optical cavity  the accelerator RF Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ThomX R&D challenges Three-stage CPA amplification R&D micro-structured fibres Ytterbium doped fibres connections must be robust, stable, reliable 100W obtained regularly in output State of the art, best effort : 800W: Limpert et al., Opt. Lett. 35 (2010) 94 2kW: Otto et al., Opt. Lett. 39 (2014) 6446 Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ThomX R&D challenges ~0.4Ptrans Ptrans Optics R&D: Thermal effects in compressor (CVBG) Thermal effects in optical cavity: substrate choice Spatial mode matching (adaptative optics) H. Carstens et al., ASSL JTh5A (2013) 3 ~0.4Ptrans Ptrans Thermal loading of the cavity takes few 100 ms (Ptrans reduces) Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

Past results: MightyLaser Results obtained at the KEK ATF: collaboration with KEK colleagues 1.08MHz collision rate, ~1nC beam charge, 1.3GeV damping ring Finesse ~ 30000 ~50W seed laser-power ~100 γ/crossing @ ~25MeV Pcavity>100kW (transient regime) 40kW (continuous regime) Photon yield as function of time measured with BaF2 scintillator block + PM Observation of emittance evolution Exhaustion of the electron beam Optics being re-commissioned at LAL: >10kW with 25W incident (finesse 3000 cavity) x3 in coupling (better mode matching) Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

LINAC solution Laser RF Gun LINAC Electron bunches Compton photon  lower repetition rate but  better beam quality (0.5% BW, 109 ph./s) RF Gun LINAC Electron bunch Ring solution  higher repetition rate but  lower beam quality (few % BW, 1013 ph./s) Storage ring Compton photon Laser Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ELI-NP-GS in a nutshell 700 MeV 280 MeV 32 bunches separated by 15.6 ns, 100Hz commissioning in 2016 and 2018 Tight constraints on photon beam: → divergence <0.2mrad → beam spot at 10m <1mm → bandwidth (BW) <0.5% → av. spectral density @20MeV: 8x103 (s.eV)-1 → brilliance 1x1022 /(s.mm².mrad²0.1%BW) D. Habs et al., arXiv:1008.5336 Curtis et al. Optics Letters 36 2164 (2011) State of the art laser systems required Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ELI-NP-GS recirculator design Start-to-end simulation optimize geometry to maximize spectral density (ph/(s.eV)) averaged over the number of passes (N=32) K. Dupraz et al, Phys. Rev. ST Accel. Beams 17 033501 (2014) Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ELI-NP-GS alignement, synchronisation Tight constraints on alignment & synchronisation:  Transverse spread of IPs<~ 3 µm, typical divergence <few µrad  Synchronisation < 200fs K. Dupraz et al, Phys. Rev. ST Accel. Beams 17 033501 (2014) Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ELI-NP-GS alignement, synchronisation 100µm, 100µrad alignment NOT ACCEPTABLE Dedicated alignment procedure required K. Dupraz et al, Phys. Rev. ST Accel. Beams 17 033501 (2014) Demonstration of the synchronisation: few 100fs for 1 pass with a 3 ps laser Experimental setup being updated with a few 200fs laser Robustness to environmental fluctuations required K. Dupraz PhD Thesis, LAL, Sept. 2015 Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ELI-NP-GS optics Beam quality depends strongly on: Parabola optical micro-structure Avoid peaks in surface PSD  Constrain PSD shape σRMS<10nm Good polishing company required K. Dupraz PhD Thesis, LAL, Sept. 2015 Beam quality depends strongly on: MPS optical macro-structure Avoid systematical bias of all MPS Characterisation needed May need to perform a 'smart' ordering of MPS Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

Summary Original solution for high spectral density ICS source Proof-of-principles and detailed simulations show it is feasible Detailed prototype studies to be done in the automn Main challenges related to optics quality, synchronisation, alignment Active R&D on high average flux ICS source Few 10kW operations routinely demonstrated in an accelerator (KEK) Naive scaling  few 100kW are reachable Requires understanding and mitigation of thermal effects, and new effects that could dominate in the ~MW regime What is the limit of the technology for high finesse cavities in pulsed regime ? Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

Backup slides NPNSNP, Ricotti, Tokai, Japan, 29/01/2014 Aurélien MARTENS

A γγ collider design Optical path ~ 100m (3MHz rep. rate) Ginzburg et al., Pis'ma Zh. Eksp. Teor. Fiz. 34 514 (1981) Optical path ~ 100m (3MHz rep. rate) Cavity gain ~ 300 ~3000 bunches at 5Hz rep. Rate 10J laser at interaction point (30mJ input) Mechanical stability  Optics breakdown fluence  Surface quality for large optics  Cannot cope with 30MW in cavity   need to empty cavity between trains Dedicated laser locking procedure in this regime Laser phase noise must be controlled  Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

Another γγ collider design Asner et al., hep-ex/0111056 Bogacz et al., arXiv:1208.2827 ~150 bunches 10 trains at 100Hz rep. Rate ~1J per pulse few ps ~10-20µm laser focalisation 200000 pulses/sec Optical recirculator or resonator required Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

GBS Collimation Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ELI-NP-GBS IP lasers J.J. Rocca, Colorado State University, A. Curtis et al. Optics Letters, 36, 2164, (2011) Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

ELI-NP-GBS polarization Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS

Optics surface quality Photon'15, Novossibirsk, Russia, 19/06/2015 Aurélien MARTENS