EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.

Slides:



Advertisements
Similar presentations
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Advertisements

MIMO Communication Systems
Prakshep Mehta ( ) Guided By: Prof. R.K. Shevgaonkar
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice.
Capacity of Wireless Channels
EE359 – Lecture 7 Outline Multipath Intensity Profile Doppler Power Spectrum Shannon Capacity Capacity of Flat-Fading Channels Fading Statistics Known.
EE359 – Lecture 16 Outline Announcements: HW due Friday MT announcements Rest of term announcements MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver.
EE359 – Lecture 16 Outline Announcements: HW due Thurs., last HW will be posted Thurs., due 12/4 (no late HWs) Friday makeup lecture 9:30-10:45 in Gates.
EE359 – Lecture 16 Outline MIMO Beamforming MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver Design Maximum-Likelihood, Decision Feedback, Sphere Decoder.
Mohammad Jaber Borran, Mahsa Memarzadeh, and Behnaam Aazhang June 29, 2001 Coded Modulation for Orthogonal Transmit Diversity.
Mattias Wennström Signals & Systems Group Mattias Wennström Uppsala University Sweden Promises of Wireless MIMO Systems.
IERG 4100 Wireless Communications
1 CODING FOR MULTIPLE ANTENNAS WITH LINEAR AND NONLINEAR (BLAST) INTERFACES DIMACS WORKSHOP, OCTOBER 2002 EZIO BIGLIERI (work done with A. Nordio, G. Taricco,
EE360: Lecture 6 Outline MAC Channel Capacity in AWGN
Wireless Communications: Lecture 2 Professor Andrea Goldsmith
Space Time Block Codes Poornima Nookala.
Coding and Information Theory Lecture 15: Space Time Coding and MIMO:
Capacity of multi-antenna Gaussian Channels, I. E. Telatar By: Imad Jabbour MIT May 11, 2006.
Final Announcements Final Friday, 12/13, 12:15-3:15, here (Gates B3) l Covers Chapters , , 12, (plus earlier chapters covered.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Transmit.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach.
MULTIPLE INPUT MULTIPLE OUTPUT SYSTEMS (MIMO)
Wireless Communication Elec 534 Set IV October 23, 2007
Course Summary Signal Propagation and Channel Models
8: MIMO II: Capacity and Multiplexing Architectures Fundamentals of Wireless Communication, Tse&Viswanath 1 8. MIMO II: Capacity and Multiplexing Architectures.
Transmit Diversity with Channel Feedback Krishna K. Mukkavilli, Ashutosh Sabharwal, Michael Orchard and Behnaam Aazhang Department of Electrical and Computer.
Ali Al-Saihati ID# Ghassan Linjawi
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 11 Feb. 19 th, 2014.
EE359 – Lecture 15 Outline Introduction to MIMO Communications MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing.
Course Summary Signal Propagation and Channel Models Modulation and Performance Metrics Impact of Channel on Performance Fundamental Capacity Limits Flat.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
Coded Modulation for Multiple Antennas over Fading Channels
A. Pascual Contributions and Proposals of UPC to Department 1 - NEWCOM 1 Contributions and Proposals of UPC - Department 1 NEWCOM Antonio Pascual Iserte.
MIMO Communications and Algorithmic Number Theory G. Matz joint work with D. Seethaler Institute of Communications and Radio-Frequency Engineering Vienna.
Interference in MANETs: Friend or Foe? Andrea Goldsmith
Space Time Codes. 2 Attenuation in Wireless Channels Path loss: Signals attenuate due to distance Shadowing loss : absorption of radio waves by scattering.
EE359 – Lecture 12 Outline Combining Techniques
Media-based Modulation
Iterative detection and decoding to approach MIMO capacity Jun Won Choi.
Channel Capacity of MIMO Channels 指導教授:黃文傑 老師 指導教授:黃文傑 老師 學 生:曾凱霖 學 生:曾凱霖 學 號: M 學 號: M 無線通訊實驗室 無線通訊實驗室.
Multipe-Symbol Sphere Decoding for Space- Time Modulation Vincent Hag March 7 th 2005.
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
EE 359: Wireless Communications Announcements and Course Summary
Course Summary Signal Propagation and Channel Models Modulation and Performance Metrics Impact of Channel on Performance Fundamental Capacity Limits Flat.
EE359 – Lecture 9 Outline Linear Modulation Review
SMARAD / Radio Laboratory 1 Overview of MIMO systems S Postgraduate Course in Radio Communications Sylvain Ranvier
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
EE359 – Lecture 11 Outline Announcements Class project links posted (please check). Will have comments back this week. Midterm announcements No HW next.
EE359 – Lecture 17 Outline Review of Last Lecture MIMO Decision-Feedback Receivers MIMO Sphere Decoders Other MIMO Design Issues Introduction to ISI Countermeasures.
Channel Capacity.
Multiple Antennas.
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
EE359 – Lecture 8 Outline Capacity of Flat-Fading Channels
EE359 – Lecture 11 Outline Doppler and ISI Performance Effects
Space Time Codes.
EE359 – Lecture 12 Outline Maximal Ratio Combining
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Coding and Interleaving
Distributed MIMO Patrick Maechler April 2, 2008.
Space Time Coding and Channel Estimation
EE359 – Lecture 17 Outline Announcements Review of Last Lecture
EE359 – Lecture 10 Outline Announcements: MGF approach for average Ps
EE359 – Lecture 14 Outline Announcements:
MIMO (Multiple Input Multiple Output)
EE359 – Lecture 8 Outline Announcements Capacity of Fading channels
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
Presentation transcript:

EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs MIMO Receiver Design

Review of Last Lecture Practical constraints in adaptive modulation Constellation update rate Estimation error and delay l Lead to irreducible error floor that depends on estimation error, channel, and their joint distribution Introduction to MIMO Channels For typical Dopplers, constant for 10s to 100s of symbol times

MIMO Decomposition Decompose channel through transmit precoding (x=Vx) and receiver shaping (y=U H y) Leads to R H  min(M t,M r ) independent channels with gain  i (i th singular value of H) and AWGN Independent channels lead to simple capacity analysis and modulation/demodulation design H=U  V H y=Hx+n y=  x+n ~~ y i =   x+n i ~ ~~ ~ ~ ~

Capacity of MIMO Systems Depends on what is known at TX and RX and if channel is static or fading For static channel with perfect CSI at TX and RX, power water-filling over space is optimal: In fading waterfill over space (based on short-term power constraint) or space-time (long-term constraint) Without transmitter channel knowledge, capacity metric is based on an outage probability P out is the probability that the channel capacity given the channel realization is below the transmission rate.

Beamforming Scalar codes with transmit precoding Transforms system into a SISO system with diversity. Array and diversity gain Greatly simplifies encoding and decoding. Channel indicates the best direction to beamform Need “sufficient” knowledge for optimality of beamforming y=u H Hvx+u H n

Optimality of Beamforming Mean Information Covariance Information

Diversity vs. Multiplexing Use antennas for multiplexing or diversity Diversity/Multiplexing tradeoffs (Zheng/Tse) Error Prone Low P e

How should antennas be used? Use antennas for multiplexing: Use antennas for diversity High-Rate Quantizer ST Code High Rate Decoder Error Prone Low P e Low-Rate Quantizer ST Code High Diversity Decoder Depends on end-to-end metric: Solve by optimizing app. metric

MIMO Receiver Design Optimal Receiver: Maximum likelihood: finds input symbol most likely to have resulted in received vector Exponentially complex # of streams and constellation size Decision-Feedback receiver Uses triangular decomposition of channel matrix Allows sequential detection of symbol at each received antenna, subtracting out previously detected symbols Sphere Decoder: Only considers possibilities within a sphere of received symbol. Space-Time Processing: Encode/decode over time & space

Main Points MIMO systems exploit multiple antennas at both TX and RX for capacity and/or diversity gain With TX and RX channel knowledge, channel decomposes into independent channels Linear capacity increase with number of TX/RX antennas Without TX CSI, capacity vs. outage is the capacity metric MIMO introduces diversity/multiplexing tradeoff Optimal use of antennas depends on application MIMO RX design trades complexity for performance