Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE.

Slides:



Advertisements
Similar presentations
Alberto Ribon CERN Geant4Workshop Vancouver, September 2003 Tutorial of the Statistical Toolkit
Advertisements

Maria Grazia Pia, INFN Genova Precision Electromagnetic Physics in Geant4: the Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia, S.
Maria Grazia Pia, INFN Genova Test & Analysis Project Maria Grazia Pia, INFN Genova on behalf of the T&A team
M. Glaser, G. Guatelli, B. Mascialino, M. Moll, M.G. Pia, F. Ravotti Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental.
Precision validation of Geant4 electromagnetic physics Katsuya Amako, Susanna Guatelli, Vladimir Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami,
Maria Grazia Pia, INFN Genova Geant4 Physics Validation (mostly electromagnetic, but also hadronic…) K. Amako, S. Guatelli, V. Ivanchenko, M. Maire, B.
Maria Grazia Pia, INFN Genova Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia INFN Genova, Italy P. Nieminen ESA/ESTEC
Low Energy Electromagnetic Physics
Geant4-Genova Group Validation of Susanna Guatelli, Alfonso Mantero, Barbara Mascialino, Maria Grazia Pia, Valentina Zampichelli INFN Genova, Italy IEEE.
Maria Grazia Pia Experimental validation of models in the pre-equilibrium and nuclear de-excitation phase G.A.P. Cirrone 1, G. Cuttone 1, F. Di Rosa 1,
Barbara Mascialino, INFN Genova An update on the Goodness of Fit Statistical Toolkit B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Maria Grazia Pia, INFN Genova Geant4 Physics Validation Geant4 Space User Workshop Pasadena, 6-10 November 2006 M.G. Pia On behalf of the LowE EM and Advanced.
Hadronic and Electromagnetic Physics: special applications V.Ivanchenko BINP, Novosibirsk, Russia & CERN, Geneve, Switzerland.
J. Tinslay 1, B. Faddegon 2, J. Perl 1 and M. Asai 1 (1) Stanford Linear Accelerator Center, Menlo Park, CA, (2) UC San Francisco, San Francisco, CA Verification.
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Valencia, April 14 th, 2005 Geant4 and the underground physics community.
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Zaragoza, September 15 th, 2005 Geant4 and the underground physics community... (part.
Maria Grazia Pia, INFN Genova Geant4 Electromagnetic Validation (mostly electromagnetic, but also a bit of hadronic…) K. Amako, G.A.P. Cirrone, G. Cuttone,
Maria Grazia Pia, INFN Genova CERN, 26 July 2004 Background of the Project.
1 M.G. Pia et al. The application of GEANT4 simulation code for brachytherapy treatment Maria Grazia Pia INFN Genova, Italy and CERN/IT
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova
Geant4-INFN (Genova-LNS) Team Validation of Geant4 electromagnetic and hadronic models against proton data Validation of Geant4 electromagnetic and hadronic.
Maria Grazia Pia Systematic validation of Geant4 electromagnetic and hadronic models against proton data Systematic validation of Geant4 electromagnetic.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Geant4 simulation of the attenuation properties of plastic shield for  - radionuclides employed in internal radiotherapy Domenico Lizio 1, Ernesto Amato.
Comparison of data distributions: the power of Goodness-of-Fit Tests
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics R. Capra, S. Chauvie, G.A.P. Cirrone, G. Cuttone, F. Di Rosa, Z. Francis, S. Guatelli,
Workshop on Physics on Nuclei at Extremes, Tokyo Institute of Technology, Institute for Nuclear Research and Nuclear Energy Bulgarian Academy.
SOI detector Geant4-based studies to characterise the tissue-equivalence of SOI and diamond microdosimeteric detectors, under development at CMRP S. Dowdell,
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Ruđer Bošković Institute, Zagreb, Croatia CRP: Development of a Reference Database for Ion Beam Analysis Measurements of differential cross sections for.
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova on behalf of the Low Energy Electromagnetic.
IEEE Nuclear Science Symposium and Medical Imaging Conference Short Course The Geant4 Simulation Toolkit Sunanda Banerjee (Saha Inst. Nucl. Phys., Kolkata,
Geant4 Workshop 2004 Maria Grazia Pia, INFN Genova Physics Book Maria Grazia Pia INFN Genova on behalf of the Physics Book Team
Maria Grazia Pia Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental validation Simulation for LHC Radiation.
IEEE NSS/MIC 2004 Electromagnetic Physics The full set of lecture notes of this Geant4 Course is available at
IEEE NSS 2012 IEEE NSS 2007 Honolulu, HI Best Student Paper (A. Lechner) IEEE TNS April 2009 Same geometry, primary generator and energy deposition scoring.
Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP),
Maria Grazia Pia, INFN Genova Update on the Goodness of Fit Toolkit M.G. Pia B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Precision Validation of Geant4 Electromagnetic Physics Geant4 DNA Project Meeting 26 July 2004, CERN Michela.
Test Beam Simulation for ESA BepiColombo Mission Marcos Bavdaz, Alfonso Mantero, Barbara Mascialino, Petteri Nieminen, Alan Owens, Tone Peacock, Maria.
Precision analysis of Geant4 condensed transport effects on energy deposition in detectors M. Batič 1,2, G. Hoff 1,3, M. G. Pia 1 1 INFN Sezione di Genova,
Applications of Monte Carlo Code for a Gamma Resonance System Analysis L. Wielopolski, A. Hanson, I. Dioszegi, M. Todosow, Brookhaven National Laboratory,
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Electromagnetic Physics
Geant4 Training 2003 Electromagnetic Physics The full set of lecture notes of this Geant4 Course is available at
Measurements of the 27 Al(d,  ) 25 Mg excitation functions A. Gurbich Institute of Physics and Power Engineering Obninsk, Russia.
Overview of Ion-Ion validation KOI, Tatsumi SLAC National Accelerator Laboratory 1Geant4 Collaboration workshop
Validation of EM Part of Geant4
Electromagnetic Physics Electromagnetic packages in Geant4 Standard Low Energy Optical Muons Different modeling approach Specialized.
Upgrade of G4Penelope models Luciano Pandola INFN – LNGS for the Geant4 EM Working Groups 15 th Geant4 Workshop, ESTEC, October 4 th -8 th, 2010.
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia, INFN Genova on behalf of the LowE WG
Validation of the bremssrahlung process IV Workshop on Geant4 physics validation Susanna Guatelli, Luciano Pandola, Maria Grazia Pia, Valentina Zampichelli.
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Genova, July 18 th, 2005 Geant4 and the underground physics community.
Geant4 and the Underground Physics Community Luciano Pandola INFN, Laboratori Nazionali del Gran Sasso for the ILIAS JRA1 and N3 Monte Carlo groups Geant4.
Electromagnetic physics
Interactions of Ionizing Radiation
Fabien Zehr Double π photoproduction Glasgow 28 March 2006 Double π photoproduction at threshold and in the second resonance region With Crystal Ball and.
12th Geant4 Space Users Workshop
Electromagnetic Physics
Geant4 REMSIM application
F. Foppiano, S. Guatelli, B. Mascialino, M. G. Pia, M. Piergentili
Low Energy Electromagnetic Physics
1. Introduction Secondary Heavy charged particle (fragment) production
Hadronic physics validation of Geant4
Geant4 physics validation: Bragg Peak
The Hadrontherapy Geant4 advanced example
An update on the Goodness of Fit Statistical Toolkit
Precision validation of Geant4 electromagnetic physics
G. A. P. Cirrone1, G. Cuttone1, F. Di Rosa1, S. Guatelli1, A
The Geant4 Hadrontherapy Advanced Example
Presentation transcript:

Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE Nuclear Science Symposium San Diego, 30 October – 4 November 2006 INFN Genova – INFN Gran Sasso Laboratory - LIP

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 2 Geant4 electron Bremsstrahlung 2 electromagnetic physics packages Standard Low Energy 3 Bremsstrahlung processes G4eBremsstrahlung G4PenelopeBremsstrahlung G4eLowEnergyBremsstrahlung Tsai 2BN2BS angular distributions angular distribution

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 3 Validation of Geant4 EM physics K. Amako et al., IEEE Trans. Nucl. Sci. 52 (2005) 910 Ongoing large-scale project Photon mass attenuation coefficient Range, Stopping power (e, p,  ) NISTNIST NSS 2006 Atomic relaxation (fluorescence, Auger effect) Proton Bragg peak Electron Bremsstrahlung Bremsstrahlung Difficult to find reference data Thin/thick target experiments Difficult to disentangle effects (because of the continuous part) 1 st validation cycle: focus on low energy

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 4 The experimental set-up e - beam(70 keV-10 MeV) incident on a slab of material Z axis electrons Photon (energy, θ) θ YieldEnergyPolar Angle Yield, Energy and Polar Angle of the emitted photons Electrons and  -rays are absorbed Bremsstrahlung photons can be transmitted Secondary production threshold = 0.5  m Quantitatitative comparison of experimental - simulated distributions Statistical Toolkit Goodness-of-Fit test

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 5 Data sets N. Starfelt et al., Phys. Rev. 102 (1956) Thin target: Be, Al, Au - 2.7, 4.5, 9.7 MeV Double differential cross sections W.E. Dance et al., Journal of Appl. Phys. 39 (1968) Thick target: Al, Fe – 0.5, 1 MeV Double differential cross sections Integrated  yield R. Ambrose et al., NIM B 56/57 (1991) 327 Absolute and relative yield Preliminary results Work in progress!

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 6 Double differential  at 2.7 MeV on thin (2.63 mg/cm 2 ) Be target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 7 Double differential  at 4.5 MeV on thin (2.63 mg/cm 2 ) Be target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 8 Double differential  at 9.7 MeV on thin (2.63 mg/cm 2 ) Be target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 9 Double differential  at 2.7 MeV on thin (0.878 mg/cm 2 ) Al target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 10 Double differential  at 2.7 MeV on thin (0.878 mg/cm 2 ) Al target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 11 Double differential  at 4.5 MeV on thin (0.878 mg/cm 2 ) Al target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 12 Double differential  at 9.7 MeV on thin (0.878 mg/cm 2 ) Al target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 13 Double differential  at 2.7 MeV on thin (0.209 mg/cm 2 ) Au target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 14 Double differential  at 4.5 MeV on thin (0.209 mg/cm 2 ) Au target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 15 Double differential  at 9.7 MeV on thin (0.209 mg/cm 2 ) Au target Energy (MeV) N. Starfelt et al., Phys. Rev. 102 (1956) 1598 data + simulation data + simulation

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 16 Angular distribution Red = data Black = simulation o  Al  Fe Standard package Absolute comparison E thr = 46 keV W.E. Dance et al., Journal of Applied Physics 39 (1968) keV electrons on Al (0.548 g/cm 2 ) and Fe (0.257 g/cm 2 ) Thick target experiment 500 keV

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 17 Angular distribution precise agreement! W.E. Dance et al., Journal of Applied Physics 39 (1968) keV

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 18 Angular distribution W.E. Dance et al., Journal of Applied Physics 39 (1968) keV

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 19 Angular distribution Red = data Black = simulation o  Al  Fe Same test for 1 MeV primary electrons (threshold: 50 keV) Standard package Absolute comparison W.E. Dance et al., Journal of Applied Physics 39 (1968) 2881 Targets: Al (0.548 g/cm 2 ) and Fe (0.613 g/cm 2 ) 1 MeV

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 20 Angular distribution Good agreement for Al - Reasonable also for Fe (2BN) precise agreement! W.E. Dance et al., Journal of Applied Physics 39 (1968) MeV

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 21 Angular distribution 2BS: good for Al and Fe (except in the backward direction) W.E. Dance et al., Journal of Applied Physics 39 (1968) keV

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 22 Integral  yield Total  yield on Al integrated on (0   ) and on energy (E th  E max ) Standard process o  data  simul. W.E. Dance et al., Journal of Applied Physics 39 (1968) 2881

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 23 Angular distributions Angle (deg) Angular distribution of photons is strongly model-dependent Penelope Standard Low Energy (TSAI) Penelope TSAI 2BS 2BN 70 keV Low Energy Package

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 24 Energy distribution at 70 keV 70 keV electrons impinging on Al (25.4 mg/cm 2 ) Penelope Low Energy - TSAI Photon energy (keV) Intensity/Z (eV/sr keV) 70 keV e - photon direction 45 deg R. Ambrose et al., Nucl. Instr. Meth. B 56/57 (1991) 327

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 25 Relative comparison at 70 keV Relative comparison (45° direction) Shapes of the spectra are in good agreement Intensity/Z (eV/sr keV) Photon energy (keV) Penelope Low Energy - TSAI Intensity/Z (eV/sr keV)

S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade 26 Conclusions A project is in progress to test all Geant4 Bremsstrahlung models Rigorous, quantitative comparison against experimental data Preliminary results at low energies Power of the toolkit strategy Geant4 models differ significantly at low energy