(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

Operations on Functions
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
TRIGONOMETRY FUNCTIONS
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
A n g l e s a n d T h e i r M e a s u r e. An angle is formed by joining the endpoints of two half-lines called rays. The side you measure from is called.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
When trying to figure out the graphs of polar equations we can convert them to rectangular equations particularly if we recognize the graph in rectangular.
LINEAR Linear programming techniques are used to solve a wide variety of problems, such as optimising airline scheduling and establishing telephone lines.
Properties of Logarithms
REVIEW Polar Coordinates and Equations.
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
The Complex Plane; DeMoivre's Theorem. Real Axis Imaginary Axis Remember a complex number has a real part and an imaginary part. These are used to plot.
VECTORS.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
PARAMETRIC Q U A T I 0 N S. The variable t (the parameter) often represents time. We can picture this like a particle moving along and we know its x position.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Print polar coordinates for hw
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
10-7 (r, ).
REVIEW 9.1, 9.3, and 9.4 Polar Coordinates and Equations.
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
(r, ).
PARAMETRIC Q U A T I N S.
VECTORS.
(r, ).
PARAMETRIC Q U A T I N S.
INVERSE FUNCTIONS.
(r, θ).
SIMPLE AND COMPOUND INTEREST
INVERSE FUNCTIONS Chapter 1.5 page 120.
INVERSE FUNCTIONS.
Symmetric about the y axis
exponential functions
Symmetric about the y axis
The Complex Plane; DeMoivre's Theorem
Presentation transcript:

(r,  )

You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate system.

The center of the graph is called the pole. Angles are measured from the positive x axis. Points are represented by a radius and an angle (r,  ) radiusangle To plot the point First find the angle Then move out along the terminal side 5

A negative angle would be measured clockwise like usual. To plot a point with a negative radius, find the terminal side of the angle but then measure from the pole in the negative direction of the terminal side.

Let's plot the following points: Notice unlike in the rectangular coordinate system, there are many ways to list the same point.

Let's take a point in the rectangular coordinate system and convert it to the polar coordinate system. (3, 4) r  Based on the trig you know can you see how to find r and  ? 4 3 r = 5 We'll find  in radians (5, 0.93) polar coordinates are:

Let's generalize this to find formulas for converting from rectangular to polar coordinates. (x, y) r  y x

Now let's go the other way, from polar to rectangular coordinates. Based on the trig you know can you see how to find x and y? rectangular coordinates are: 4 y x

Let's generalize the conversion from polar to rectangular coordinates. r y x

330  315  300  270  240  225  210  180  150  135  120  00 90  60  30  45  Polar coordinates can also be given with the angle in degrees. (8, 210°) (6, -120°) (-5, 300°) (-3, 540°)

Convert the rectangular coordinate system equation to a polar coordinate system equation.  r must be  3 but there is no restriction on  so consider all values. Here each r unit is 1/2 and we went out 3 and did all angles. Before we do the conversion let's look at the graph.

Convert the rectangular coordinate system equation to a polar coordinate system equation. substitute in for x and y We wouldn't recognize what this equation looked like in polar coordinates but looking at the rectangular equation we'd know it was a parabola. What are the polar conversions we found for x and y?

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. Shawna has kindly given permission for this resource to be downloaded from and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar