© 2004 Pearson Education Inc., publishing as Addison-Wesley

Slides:



Advertisements
Similar presentations
What determines Luminosity? Stephans law: Power radiated depends on Temp to the 4 th power! Stephans law: Power radiated depends on Temp to the 4 th power!
Advertisements

Understanding the Stars
Chapter 15: Surveying the Stars
Outline of Ch 11b: The H-R Diagram
Stars and Their Characteristics
1. absolute brightness - the brightness a star would have if it were 10 parsecs from Earth.
Stars and the HR Diagram Dr. Matt Penn National Solar Observatory
Stars Stars are very far away.
Chapter 14 Surveying the Stars. Luminosity and Apparent Brightness.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 10 Measuring the Stars.
Announcements Exam Grades Wednesday March 31 Angel Grade update Friday April 2 Star Assignment 6, due Wednesday March 31 ÜDo Angel quiz,
Chapter 11 Surveying the Stars Properties of Stars First let see how we measure three of the most fundamental properties of stars: 1.Luminosity.
Guiding Questions How far away are the stars?
Astronomy 100 Tuesday, Thursday 2:30 - 3:45 pm Tom Burbine
Properties of Stars How do we measure stellar luminosities?
Question 1 Stellar parallax is used to measure the a) sizes of stars.
Surveying the Stars.
Chapter 12: Surveying the Stars
Chapter 12: Surveying the Stars
Chapter 11 Surveying the Stars Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?
The Nature of the Stars Chapter 19. Parallax.
Telescopes (continued). Basic Properties of Stars.
Chapter 11 Surveying The Stars Surveying The Stars.
© 2004 Pearson Education Inc., publishing as Addison-Wesley 15. Our Star This weeks homework: 2 tutorials: “Formation of the Solar System” “Detecting Extrasolar.
Properties of Stars.
How Do Astronomers Measure the Brightness of a Star?  Stars vary greatly in brightness  Early peoples observed bright stars and grouped them into constellations.
PG. 127 Measuring the Stars. Groups of stars Long ago, people grouped bright stars and named them after animals, mythological characters or every day.
Surveying the Stars Insert TCP 5e Chapter 15 Opener.
Hertzsprung-Russell Diagram
Universe Eighth Edition Universe Roger A. Freedman William J. Kaufmann III CHAPTER 17 The Nature of Stars CHAPTER 17 The Nature of Stars.
Properties of Stars.
Chapter 11 Surveying the Stars Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?
26.2 Stars Proxima Centauri, the red star at the center, is the closest star to the sun.
Chapter 11 Surveying the Stars Properties of Stars Our Goals for Learning How luminous are stars? How hot are stars? How massive are stars?
Physical properties. Review Question What are the three ways we have of determining a stars temperature?
1 Stars Stars are very far away. The nearest star is over 270,000 AU away! ( Pluto is 39 AU from the Sun ) That is equal to 25 trillion miles! At this.
All stars form in clouds of dust and gas. Balance of pressure: outward from core and inward from gravity.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 17.
Stars …just kidding. In a nutshell… -born from clouds of interstellar gas -shine by nuclear fusion -shine for millions or billions of years -die.
Surveying the Stars. Properties of Stars Our goals for learning How do we measure stellar luminosities? How do we measure stellar temperatures? How do.
Chapter 11: Chapter 11: Characterizing Stars. How near is the closest star other than the Sun? How near is the closest star other than the Sun? Is the.
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
Chapter 15 Surveying the Stars Star in the Wikipedia.
Solid Molecules Neutral Gas Ionized Gas (Plasma) Level of ionization also reveals a star’s temperature 10 K 10 2 K 10 3 K 10 4 K 10 5 K 10 6 K.
Chapter 11 Surveying the Stars The brightness of a star depends on both distance and luminosity How luminous are stars?
Measuring the Stars Chapter Grouping of Stars Groups of stars named after animals, mythological characters, or everyday objects are called constellations.
Astrophysics of Life : Stars. 2 Wave Characteristics: Wavelength - Distance between successive wave peaks Period – Time between passing wave peaks Frequency.
Objectives Determine how distances between stars are measured. Distinguish between brightness and luminosity. Identify the properties used to classify.
© 2010 Pearson Education, Inc. Chapter 15 Surveying the Stars.
Chapter 10 Measuring the Stars. Star Cluster NGC ,000 light-years away.
How Do Astronomers Measure the Brightness of a Star? Stars vary greatly in brightness Stars vary greatly in brightness Early peoples observed bright stars.
Stars.
 Students will be able to determine how distances between stars are measured.  Students will be able to distinguish between brightness and luminosity.
© 2011 Pearson Education, Inc. Chapter 17 Measuring the Stars.
Chapter 11: Characterizing Stars
Measuring the Stars What properties of stars might you want to determine?
Chapter 11: Chapter 11: Characterizing Stars. How near is the closest star other than the Sun? How near is the closest star other than the Sun? Is the.
Remember that stellar distances can be measured using parallax:
Chapter 11 Surveying the Stars. How do we measure stellar luminosities?
Universe Tenth Edition Chapter 17 The Nature of the Stars Roger Freedman Robert Geller William Kaufmann III.
Copyright © 2012 Pearson Education, Inc. Chapter 11 Surveying the Stars.
CSI661/ASTR530 Spring, 2011 Chap. 2 An Overview of Stellar Evolution Feb. 02, 2011 Jie Zhang Copyright ©
How the Sun Shines. The Luminosities of Stars Stellar distances can be determined via parallax – the larger the distance, the smaller the parallax angle,
The Nature of Stars (Chapter 17 – Universe) The Nature of Stars (Chapter 17 – Universe)
Homework #8 1) Suppose a comet of mass 2000 kg smashed into the Sun. It was measured to be traveling at 10 km/s. How much momentum was transferred to.
Section 2: Measuring the Stars
Chapter 12 Surveying The Stars.
Questions 1 – 24: Due Wednesday, February 29, 5:00 pm.
Section 2: Measuring the Stars
Basic Properties of Stars
Presentation transcript:

© 2004 Pearson Education Inc., publishing as Addison-Wesley Properties of Stars © 2004 Pearson Education Inc., publishing as Addison-Wesley

Snapshot of the Heavens Our goals for learning: How can we learn about the lives of stars, which last millions to billions of years? What two basic physical properties do astronomers use to classify stars? © 2004 Pearson Education Inc., publishing as Addison-Wesley

How can we Study the Life Cycles of Stars? A star can live for millions to billions of years. we will never observe a particular star evolve from birth to death so how can we study stellar evolution? The key is that all stars were not born at the same time. the stars which we see today are at different stages in their lives we observe only a brief moment in any one star’s life by studying large numbers of stars, we get a “snapshot” of one moment in the history of the stellar community we can draw conclusions just like we would with human census data…we do stellar demographics! The stars we observe also have different masses. by counting stars of different masses, we can determine how long stars of a given mass remain in a certain stage of life © 2004 Pearson Education Inc., publishing as Addison-Wesley

Classification of Stars Stars were originally classified based on: their brightness their location in the sky This classification is still reflected in the names of the brightest stars…those we can see with our eyes: Order of brightness within a constellation Latin Genitive of the constellation  Orionis  Geminorum © 2004 Pearson Education Inc., publishing as Addison-Wesley

Classification of Stars The old classification scheme told us little about a star’s true (physical) nature. a star could be very bright because is very close to us; not because it was truly bright two stars in the same constellation might not be close to each other; one could be much farther away In the 20th Century, astronomers developed a more appropriate classification system based on: a star’s luminosity a star’s surface temperature Since these properties depend on a star’s mass and its stage in life: measuring them allows us to reconstruct stellar life cycles © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Stellar Luminosity Our goals for learning: What is luminosity and how do we determine it? How do we measure the distance to nearby stars? How does the magnitude of a star depend on its apparent brightness? © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Luminosity of Stars Luminosity – the total amount of power radiated by a star into space. Apparent brightness refers to the amount of a star’s light which reaches us per unit area. the farther away a star is, the fainter it appears to us how much fainter it gets obeys an inverse square law its apparent brightness decreases as the (distance)2 The apparent brightness of a star depends on two things: How much light is it emitting: luminosity (L) [watts] How far away is it: distance (d) [meters] (App. Brightness) Flux = L / 4d2 © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Apparent Brightness The Inverse Square Law for Light What Determines Apparent Brightness? © 2004 Pearson Education Inc., publishing as Addison-Wesley

Measuring Distances to Stars Recap of parallax – apparent wobble of a star due to the Earth’s orbiting of the Sun © 2004 Pearson Education Inc., publishing as Addison-Wesley

Measuring Distances to Stars From math on the triangle we can get d = 1 / p If p is in arcsec and d is in parsecs A star with a parallax of 1 arcsec is 1 parsec distant 1 parsec  206,265 A.U. = 3.26 light years © 2004 Pearson Education Inc., publishing as Addison-Wesley

The Brightness of Stars Astronomers still use an ancient method for measuring stellar brightness which was proposed by the Greek astronomer Hipparchus (c. 190 – 120 B.C.) Magnitude Scale This scale runs backwards: The bigger the number, the fainter the star Brightest stars are #1, next brightest are #2, etc. © 2004 Pearson Education Inc., publishing as Addison-Wesley

The Modern Magnitude System apparent magnitude = -2.5 log (app bright) brightness of a star as it appears from Earth each step in magnitude is 2.5 times in brightness absolute magnitude the apparent magnitude a star would have if it were 10 pc away © 2004 Pearson Education Inc., publishing as Addison-Wesley

Stellar Surface Temperature Our goals for learning: How are stars classified into spectral types? Does a star’s spectral type depend on its composition? What are the two main elements in all stars? © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Colors of Stars Stars come in many different colors. The color tells us the star’s temperature according to Wien’s Law. Bluer means hotter! © 2004 Pearson Education Inc., publishing as Addison-Wesley

Spectral Type Classification System O B A F G K M Oh Be A Fine Girl/Guy, Kiss Me! 50,000 K 3,000 K Temperature © 2004 Pearson Education Inc., publishing as Addison-Wesley

Spectral Types of Stars © 2004 Pearson Education Inc., publishing as Addison-Wesley

Spectral Types of Stars Spectral types are defined by the: existence of absorption lines belonging to various elements, ions, & molecules in a star’s spectrum the relative strengths of these line However, spectral type is not determined by a star’s composition. all stars are made primarily of Hydrogen & Helium Spectral type is determined by a star’s surface temperature. temperature dictates the energy states of electrons in atoms temperature dictates the types of ions or molecules which exist this, in turn, determines the number and relative strengths of absorption lines in the star’s spectrum this fact was discovered by Cecilia Payne-Gaposchkin in 1925 © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Stellar Masses Our goals for learning: What is the most important property of a star? What are the three major classes of binary star systems? How do we measure stellar masses? © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Masses of Stars Mass is the single most important property of any star. at each stage of a star’s life, mass determines… what its luminosity will be what its spectral type will be The mass of a star can only be measured directly by … observing the effect which gravity from another object has on the star This is most easily done for two stars which orbit one another…a binary star! © 2004 Pearson Education Inc., publishing as Addison-Wesley

Binary Stars (two stars which orbit one another) Optical doubles two unrelated stars which are in the same area of the sky Visual binaries a binary which is spatially resolved, i.e. two stars are seen (e.g. Sirius) © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Binary Stars Spectroscopic binaries a binary which is spatially unresolved, i.e only one star is seen; the existence of the second star is inferred from the Doppler shift of lines. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Binary Stars Eclipsing binaries a binary whose orbital plane lies along our line of sight, thus causing “dips” in the light curve. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Binary Stars The stars orbit each other via gravity. So the laws of Kepler & Newton apply! Remember Newton’s version of Kepler’s Third Law: P2 = 42 d3 / G (m1 + m2) If you can measure the orbital period of the binary (P) and the distance between the stars (d), then you can calculate the sum of the masses of both stars (m1 + m2). © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Homework New homework assignment on mastering astronomy web site - available 5pm today Due 5pm next Friday (April 6) © 2004 Pearson Education Inc., publishing as Addison-Wesley

The Hertzsprung-Russell Diagram Our goals for learning: What is the Hertzsprung-Russell (HR) diagram? What are the major features of the HR diagram? How do stars differ along the main sequence? What determines the length of time a star spends on the main sequence? What are Cepheid variable stars and why are they important to astronomers? © 2004 Pearson Education Inc., publishing as Addison-Wesley

The Hertzsprung-Russell Diagram A very useful diagram for understanding stars We plot two major properties of stars: Temperature (x) vs. Luminosity (y) Spectral Type (x) vs. Absolute Magnitude (y) Stars tend to group into certain areas bright MV faint Spectral type hot cool © 2004 Pearson Education Inc., publishing as Addison-Wesley

Spectral Type Classification System O B A F G K M Oh Be A Fine Girl/Guy, Kiss Me! Each lettered type subdivided into numbered categories based on details of spectrum …A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 F0 F1 … e.g. hottest A stars are A0, coolest A stars are A9 A9 are slightly hotter than F0 50,000 K 3,000 K Temperature © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley BRIGHT HOT COOL FAINT © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley The Main Sequence (MS) 90% of all stars lie on the main sequence! © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley BRIGHT HOT COOL FAINT © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Stellar Luminosity How can two stars have the same temperature, but vastly different luminosities? The luminosity of a star depends on 2 things: surface temperature surface area (radius) L =  T4 4  R2 The stars have different sizes!! The largest stars are in the upper right corner of the H-R Diagram. © 2004 Pearson Education Inc., publishing as Addison-Wesley

Stellar Luminosity Classes © 2004 Pearson Education Inc., publishing as Addison-Wesley

Stellar Masses on the H-R Diagram © 2004 Pearson Education Inc., publishing as Addison-Wesley

Mass-Luminosity Relation We use binary stars to measure directly the masses of stars of every type. This leads to the: Mass-Luminosity Relation L  m3.5 for main sequence stars only As one moves to the upper-left of the main sequence: stars become more massive stars become even much more luminous x2 in mass -> x11.3 in Lum stars become fewer in number © 2004 Pearson Education Inc., publishing as Addison-Wesley

Mass–Luminosity Relation All main sequence stars fuse H into He in their cores. Luminosity depends directly on mass because: more mass means more weight from the star’s outer layers nuclear fusion rates must be higher in order to maintain gravitational equilibrium © 2004 Pearson Education Inc., publishing as Addison-Wesley

Lifetime on the Main Sequence How long will it be before MS stars run out of fuel? i.e. Hydrogen? How much fuel is there? M How fast is it consumed? L  M3.5 How long before it is used up? M/L = M/M3.5 = M-2.5 © 2004 Pearson Education Inc., publishing as Addison-Wesley

Lifetime on the Main Sequence O & B Dwarfs burn fuel like a bus! M Dwarfs burn fuel like a compact car! Our Sun will last 1010 years on the Main Sequence (MS Lifetime  = 1010 yrs / M2.5) © 2004 Pearson Education Inc., publishing as Addison-Wesley

Lifetime on the Main Sequence So for example: B2 dwarf (10 M) lasts 3.2 x 107 yr F0 dwarf (2 M) lasts 1.8 x 109 yr M0 dwarf (.5 M) lasts 5.6 x 1010 yr But the Universe is 1.37 x 1010 yr old! Every M dwarf that was ever created is still on the main sequence!! © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Cepheid Variables She studied the light curves of variable stars in the Magellenic clouds. Henrietta Leavitt (1868-1921) Same distance © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Cepheid Variables The brightness of the stars varied in a regular pattern. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Cepheid Variables prototype:  Cephei F - G Bright Giants (II) whose pulsation periods (1-100 days) get longer with increased luminosity Distance Indicator!! © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Cepheid Variables © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Luminosity of Stars Luminosity – the total amount of power radiated by a star into space. Apparent brightness refers to the amount of a star’s light which reaches us per unit area. the farther away a star is, the fainter it appears to us how much fainter it gets obeys an inverse square law its apparent brightness decreases as the (distance)2 The apparent brightness of a star depends on two things: How much light is it emitting: luminosity (L) [watts] How far away is it: distance (d) [meters] (App. Brightness) Flux = L / 4d2 © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley The Instability Strip There appears to be an almost vertical region on the H-R Diagram where all stars within it (except on the Main Sequence) are pulsating and variable. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Star Clusters Our goals for learning: What are the two major types of star cluster? Why are star clusters useful for studying stellar evolution? How do we measure the age of a star cluster? © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Open Clusters 100’s of stars 106 - 109 years old irregular shapes gas or nebulosity is sometimes seen Pleaides (8 x 107 yrs) © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley Globular Clusters 105 stars 8 to 15 billion years old (1010 yrs) spherical shape NO gas or nebulosity M 80 (1.2 x 1010 yrs) © 2004 Pearson Education Inc., publishing as Addison-Wesley

Clusters are useful for studying stellar evolution! all stars are the same distance use apparent magnitudes all stars formed at about the same time they are the same age Plot an H-R Diagram! © 2004 Pearson Education Inc., publishing as Addison-Wesley

Globular Cluster H-R Diagram Pleiades H-R Diagram Palomar 3 © 2004 Pearson Education Inc., publishing as Addison-Wesley

Cluster H-R Diagrams Indicate Age © 2004 Pearson Education Inc., publishing as Addison-Wesley

Cluster H-R Diagrams Indicate Age All stars arrived on the MS at about the same time. The cluster is as old as the most luminous (massive) star left on the MS. All MS stars to the left have already used up their H fuel and are gone. The position of the hottest, brightest star on a cluster’s main sequence is called the main sequence turnoff point. © 2004 Pearson Education Inc., publishing as Addison-Wesley

Older Clusters have Shorter Main Sequences © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? How can we learn about the lives of stars, which last millions to billions of years? By taking observations of many stars, we can study stars in many phases of life, just as we might study how humans age by observing the humans living in a village at one time. What two basic physical properties do astronomers use to classify stars? Stars are classified by their luminosity and surface temperature. These properties, in turn, depend primarily on a star’s mass and its stage of life. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? What is luminosity and how do we determine it? A star’s luminosity is the total power (energy per unit time) that it radiates into space. It can be calculated from a star’s measured apparent brightness and distance, using the luminosity-distance formula: apparent brightness = luminosity / (4  distance2). How do we measure the distance to nearby stars? The distance to nearby stars can be measured by parallax, the shift in theapparent position of a star with respect to more distant stars as the Earth moves around the Sun. How does the magnitude of a star depend on its apparent brightness? The magnitude scale runs backward, so a star of magnitude 5 star is brighter than a star of magnitude 18. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? How are stars classified into spectral types? Stars are classified according to their spectra, with different spectral types generally corresponding to different temperatures. In order from hottest to coolest, the major spectral types are O, B, A, F, G, K, and M. These are subdivided into numbered categories; for example, the hottest A stars are type A0 and the coolest A stars are type A9, which is slightly hotter than F0. Does a star’s spectral type depend on its composition? No. All stars are made primarily of hydrogen and helium, and the main factor in determining a star’s spectral type is its surface temperature. What are the two main elements in all stars? Hydrogen and helium. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? What is the most important property of a star? A star’s most important property is its mass, which determines its luminosity and spectral type at each stage of its life. What are the three major classes of binary star systems? A visual binary is a pair of orbiting stars that we can see distinctly. An eclipsing binary reveals its binary nature because of periodic dimming that occurs when one star eclipses the other as viewed from Earth. A spectroscopic binary reveals its binary nature because we can see the spectral lines of one or both stars shifting back and forth as the stars orbit each other. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? How do we measure stellar masses? We can directly measure mass only in binary systems in which we are able to determine the period and separation of the two orbiting stars. We can then calculate mass using Newton’s version of Kepler’s third law. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? What is the Hertzsprung-Russell (HR) diagram? It is the most important classification tool in stellar astronomy. Stars are located on the HR diagram by their surface temperature (or spectral type) along the horizontal axis and their luminosity along the vertical axis. Temperature decreases from left to right on the HR diagram. What are the major features of the HR diagram? Most stars occupy the main sequence, which extends diagonally from lower right to upper left. The giants and supergiants inhabit the upper right region of the diagram, above the main sequence. The white dwarfs are found near the lower left, below the main sequence. © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? How do stars differ along the main sequence? All main sequence stars are fusing hydrogen to helium in their cores. Stars near the lower right of the main sequence are lower in mass and have longer lifetimes than stars further up the main sequence. Lower mass main-sequence stars are also much more common than higher mass stars. What determines the length of time a star spends on the main sequence? A star’s mass determines how much hydrogen fuel it has and how fast it fuses that hydrogen into helium. The most massive stars have the shortest lifetimes because they fuse their hydrogen much faster than lower mass stars. 16.5 © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? What are Cepheid variable stars and why are they important to astronomers? A Cepheid variable is a type of very luminous pulsating variable star that follows a period–luminosity relation, which means we can calculate its luminosity by measuring its pulsation period. Once we know a Cepheid’s luminosity, we can calculate its distance from the luminosity–distance formula. This property of Cepheids enables us to measure distances to many other galaxies in which these variable stars have been observed. 16.5 © 2004 Pearson Education Inc., publishing as Addison-Wesley

© 2004 Pearson Education Inc., publishing as Addison-Wesley What have we learned? What are the two major types of star cluster? Open clusters contain up to several thousand stars and are found in the disk of the galaxy. Globular clusters are much denser, containing hundreds of thousands of stars, and are found in both the halo and disk of the galaxy. Globular cluster stars are among the oldest stars known, with ages of about 12 to 15 billion years. Open clusters are generally much younger than globular clusters. Why are star clusters useful for studying stellar evolution? The stars in star clusters are all at roughly the same distance and, since they were born at about the same time, are about the same age. How do we measure the age of a star cluster? The age of a cluster is equal to the main-sequence lifetime of hottest and most luminous main-sequence stars remaining in the cluster. On an HR diagram of the cluster, these stars sit farthest to the upper left, defining the main-sequence turnoff point of the cluster. © 2004 Pearson Education Inc., publishing as Addison-Wesley