Anuj Parikh Universitat Politècnica de Catalunya The search for “important” nuclear reactions in astrophysical environments.

Slides:



Advertisements
Similar presentations
A Study of the 30 P(p,  ) 31 S Reaction via the 32 S(d,t) 31 S Reaction and its Astrophysical Relevance Dan Irvine McMaster University CAWONAPS 2010Dec.
Advertisements

The structure of 30 S and the 29 P(p  30 S reaction rate Kiana Setoodehnia.
Advanced GAmma Tracking Array
Kurchatov Institute, Moscow
Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété.
NucleoSynthesis of Galactic 26 Al 25 Al+p Resonances Peter Parker, Yale University Catherine Deibel, Rachel Lewis, Anuj Parikh, Christopher Wrede Jac Caggiano,
(p,g) reaction via transfer reaction of mirror nuclei and direct measurement of 11C(p,g)12N at DRAGON Bing Guo For nuclear astrophysics group China Institute.
JINA Frontiers 2005 Lifetimes of the astrophysically important states in 19 Ne Wanpeng Tan University of Notre Dame Collaborators: J. Görres, M. Wiescher,
Classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University.
W A RICHTER UNIVERSITY OF THE WESTERN CAPE Shell-model studies of the rp reaction 25 Al(p,γ) 26 Si.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
First spectroscopy of 64 Cr and the collectivity of neutron-rich nuclei at N~40 CEA Saclay: A. Obertelli, F. Flavigny, A. Gillibert, A. Goergen, W. Korten,
Studying the  p-process at ATLAS Catherine M. Deibel Joint Institute for Nuclear Astrophysics Michigan State University Physics Division Argonne National.
Jennifer Fallis - ERAWAST Workshop II Using beams of reclaimed 44 Ti to explore the mechanism of core collapse in supernovae Jennifer Fallis TRIUMF.
NucleoSynthesis of Galactic 26 Al 26 Al gs +p, 26 Al m +p, 25 Al+p Resonances Peter Parker, Yale University Catherine Deibel, Rachel Lewis, Anuj Parikh,
Status of TACTIC: A detector for nuclear astrophysics Alison Laird University of York.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Astrophysics with DRAGON: The 26g Al (p,γ) 27 Si Reaction Heather Crawford a,1 for the DRAGON Collaboration b a Simon Fraser University, Burnaby, B.C.,
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
Nuclear astrophysics with the Munich Q3D spectrograph
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
New methods to measure the cross sections of 12 C+ 12 C fusion reaction Xiao Fang Department of Physics University of Notre Dame.
Absolute resonance strength measurements of the 22 Na(p,  ) reaction Chris Wrede Center for Experimental Nuclear Physics and Astrophysics University of.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Mats Lindroos Measuring difficult reaction rates involving radioactive beams: A new approach John D’Auria, Mats Lindroos, Jordi Jose and Lothar Buchmann.
Please do not write on this document. Thank you. Atomic Radius Data Element Name Atomic Number Atomic Radius (pm) Height of Straws (cm) H He
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
The Status of Nuclear Data above 20 MeV Masayoshi SUGIMOTO, Tokio FUKAHORI Japan Atomic Energy Agency IAEA’s Technical Meeting on Nuclear Data Libraries.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
TRIUMF Canada’s national laboratory for nuclear and particle physics Direct Measurement of the 21 Na(p,γ) 22 Mg Reaction: Resonance Strengths and γ-γ Analysis.
Nuclear astrophysics data needs for charged-particle reactions C. Iliadis (University of North Carolina)
The neutron source for the weak component of the s-process: latest experimental results Claudio Ugalde University of North Carolina at Chapel Hill and.
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Measurement of the 26 Al(d,p) 27 Al reaction to constrain the 26 Al(p,  ) 27 Si reaction rate Steven D. Pain Oak Ridge National Laboratory NS12, Argonne,
Study of the Destruction of 18 F in Novae with an Inverse (d,p) Reaction at the HRIBF Introduction/Motivation Experiment and Results Astrophysical Significance.
H. Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics The rp process in X-ray bursts.
CAWONAPS - Dec 10th, S(p,  ) 34 Cl Constraining nova observables: Direct measurement of 33 S(p,  ) 34 Cl in inverse kinematics Jennifer Fallis,
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
Nuclear Physics in X-ray binaries the rp-process and more Open questions Nuclear physics uncertainties status of major waiting points reaction rates mass.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
1 Isospin symmetry. Beta-decay studies of Tz=-1 nuclei at Rising. B. Rubio for the Valencia-Osaka-Surrey-Leuven-Santiago-GSI Istambul-Lund-Legnaro Collaboration.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Breakout from the CNO Cycle Joachim Görres University of Notre Dame And Joint Institute for Nuclear Astrophysics
Spectroscopic study of the key rp- process waiting point 58 Zn A.Arcones, P.Boutachkov, I.Dillmann, C. Domingo-Pardo, H. Geissel, J. Gerl, M. Gorska, G.
October 23, 2006HRIBF Workshop, ORNL1/11 First Experimental Constraints on the interference of 3/2 + resonances in the 18 F(p,  ) 15 O reaction Kyung.
H. Schatz, September 2012 X-ray bursts X-ray bursts on neutron stars: Most common thermonuclear stellar explosions.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
How can one produce rare isotopes? Question Slid 3 Hendrik Schatz NNPSS 2012, Slide 3 Rare Isotope Production Techniques: Uniqueness of FRIB Target spallation.
Nuclear Structure Information for Fundamental Physics a legacy of T.F. using the Q3D with the Tandem.
Beta decay spectroscopy studies of novae and x-ray bursts
We ask for 4 new shifts (to be combined with 2 shifts left for IS386 from 2005) of radioactive beam of 229Ra in order to search for the alpha decay branch.
David Mountford University of Edinburgh
Presented by Hendrik Schatz Michigan State University
Anuj Parikh Universitat Politècnica de Catalunya
A. Casanovas (UPC), C. Domingo-Pardo (IFIC), C. Guerrero (U
Ternary Fission and Neck Fragmentation
Rosario Gianluca Pizzone
Tan Ahn, S. Henderson, S. Aguilar, A. Simon, W. P. Tan,
Status of the A=56, 64, and 68 X-ray burst waiting points
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Letter of Intent: XXXXI
Elastic alpha scattering experiments
A Study in Garnet & Gold – Unveiling mysteries with the SE-SPS
Presentation transcript:

Anuj Parikh Universitat Politècnica de Catalunya The search for “important” nuclear reactions in astrophysical environments

Nova Cygni 1992 (d = ly) ~ km HST Nuclear physics for nova observables José et al. (2007) Vanlandingham et al. (1997) Nova V693 CrA 1981

Nova Cygni 1992 (d = ly) ~ km HST Nuclear physics for nova observables Vanlandingham et al. (1997) Nova V693 CrA 1981

Swift (NASA) Nuclear physics for XRB observables Sala, Haberl, José, AP, and Pietsch (2009) José, Moreno, AP and Iliadis (2010) burst 1 burst 5 DIFFERENT XRB NUCLEOSYNTHESIS ↔ DIFFERENT XRB LIGHTCURVES c

Swift (NASA) Nuclear physics for XRB observables Woosley et al. (2004) Sala, Haberl, José, AP, and Pietsch (2009) DIFFERENT XRB NUCLEOSYNTHESIS ↔ DIFFERENT XRB LIGHTCURVES c

Post-processing networks 142 isotopes (H – Ca) 1265 nuclear processes (Iliadis et al. 2002) 606 isotopes (H – Xe) 3551 nuclear processes (Parikh et al. 2008) most key reactions on an experimental basismostly theoretical rates above A = 40 José et al. (2007) Nova nucleosynthesis XRB nucleosynthesis

ONe nova sensitivity study (Iliadis et al. (2002)) : ■ T-ρ-t profiles from 5 different hydrodynamic nova simulations ■ Post-processing network: 142 isotopes (H – Ca) ■ Variation of each of 175 reaction rates within errors

Fox et al. 2004,2005; Chafa et al. 2005,2007 Davids et al. 2003, Bishop et al. 2003, D’Auria et al Rowland et al. 2004, Hale et al Parete-Koon et al Hale et al Bardayan et al. 2001, 2005; Graulich et al. 2001, de Sereville 2003, 2005, 2007; Kozub et al. 2005, Chae et al. 2006, Murphy et al Visser et al. 2007, Zegers et al. 2008, Lotay et al Ruiz et al. 2006, Lotay et al Jenkins et al. 2006, Ma et al. 2007, Wrede et al. 2007, 2009; Lewis et al. 2005, Deibel et al. 2008, Lotay et al Parikh et al ONe nova sensitivity study (Iliadis et al. (2002)) : ■ T-ρ-t profiles from 5 different hydrodynamic nova simulations ■ Post-processing network: 142 isotopes (H – Ca) ■ Variation of each of 175 reaction rates within errors

Fox et al. 2004,2005; Chafa et al. 2005,2007 Davids et al. 2003, Bishop et al. 2003, D’Auria et al Rowland et al. 2004, Hale et al Parete-Koon et al Hale et al Bardayan et al. 2001, 2005; Graulich et al. 2001, de Sereville 2003, 2005, 2007; Kozub et al. 2005, Chae et al. 2006, Murphy et al Visser et al. 2007, Zegers et al. 2008, Lotay et al Ruiz et al. 2006, Lotay et al Jenkins et al. 2006, Ma et al. 2007, Wrede et al. 2007, 2009; Lewis et al. 2005, Deibel et al. 2008, Lotay et al Parikh et al ONe nova sensitivity study (Iliadis et al. (2002)) : ■ T-ρ-t profiles from 5 different hydrodynamic nova simulations ■ Post-processing network: 142 isotopes (H – Ca) ■ Variation of each of 175 reaction rates within errors José et al. (2007)

Casanova et al. (2010) t = 214 s t = 498 s t = 234 s t = 279 s Convection via 12 C abundance (2D model) ~500 km 800 km

Measurements desired to constrain XRB nucleosynthesis (AP et al. 2008, 2009) -individual variation of rates -MC treatment +to better precision: 31 Cl (50 keV) 45 Cr (503 keV) 61 Ga (53 keV) 71 Br (568 keV) 83 Nb (315 keV) 86 Mo (438 keV)

Impact of rate: 65 As(p, γ ) 66 Se (Q = 2030 ± 424# keV) AP et al. 2008, 2009

Impact of ΔQ: 64 Ge(p, γ ) 65 As (Q = −80 ± 300# keV) AP et al. 2008, 2009

Amthor et al. (2006) Other XRB sensitivity studies: Roberts et al. (2010) 46 Cr(p,γ) 47 Mn Cyburt et al. (2010) Woosley et al. (2004)

Resonant component of the thermonuclear rate: Measure directly or indirectly E R CM and (  ) (masses, spins, partial widths, lifetimes)

Nova explosions: 25 Al(p,γ) 26 Si 25 Al (5/2 +, t 1/2 = 7.2 s) Peplowski et al. (2009): 25 Al(d,n) 26 Si* → p+ 26 FSU 25 Al: 2x10 4 pps 5914 keV is 3 + (l=0) Γ p = 2.9(10) eV Bardayan et al. (2006): 28 Si(p,t) 26 Si, angular ORNL 5914 is 2 + or 3 + Γ p for 5672, 5946 (based on mirror [Ili96]) Chen et al. (2008): 27 Si(p,d) 26 Si, angular 27 Si(t 1/2 = 4.2 s),10 7 pps 25 Al(p,p), spins, 25 Al: <10 6 pps Direct: hard… DRAGON, need >10 7 pps [S922 – Chen, Ruiz++, Stage 1] TUDA, need >10 5 pps [S923 – Chen, Buchmann++, Stage 1]

Nova explosions: 26 Al( 3 He,t) 26 Si*(p) 25 Al for 25 Al(p,γ) 26 Si 28 Si( 3 He,a) 27 Si*(p) 26 Al Deibel et al. (2009) S1071: Deibel et al. – for 26 Al( 3 He,t) 26 Si (nova) S1171: AP et al. – for 26 Al( 3 He,d) 27 Si (AGBs) S1200: Buchmann, Ruiz, Couture et al. – for 26 Al(n,p) and (n,a) (CCSN) → Stage 2: 24 shifts ISAC NEED AN 26 AL (t 1/2 = y) TARGET!

Nova explosions: 30 P(p,γ) 31 S 30 P+p Q = S 30 P (1 +, t 1/2 = 2.5 min) Wrede et al. (2007, 2009): 31 P( 3 He,t) 31 S* → p + 30 Yale energies, new states, Γ p /Γ for E x > 6719 keV Jenkins et al. (2005, 2006): 12 C( 20 Ne,nγ) 31 ANL-Gammasphere energies, spins (high-spin states), new state Ma et al. (2007): 32 S(p,d) 31 S, angular ORNL energies, spins Direct: hard… For DRAGON, need >10 6 pps 30 P [S1108 – Wrede, Hutcheon et al., Stage 1] +more tomorrow from D. Irvine

30 P+p Q = 6133 T < 0.4 GK 31 S 3 new states! 31 P( 3 He,t) 31 S E 3He = 20 MeV 1.5° Yale Split-Pole ΔE ~ 25 keV 5 50 nA Wrede et al. (2007) Using 31 P( 3 He,t) 31 S for 30 P(p,  ) 31 S

30 P+p Q = 6133 T < 0.4 GK 31 S 3 new states! Using 31 P( 3 He,t) 31 S for 30 P(p,  ) 31 S 31 P( 3 He,t) 31 S E 3He = 25 MeV 10° MLL Q3D nA ΔE = 10 keV PRELIMINARY!!! AP et al. 31 P( 3 He,t) 31 S E 3He = 20 MeV 1.5° Yale Split-Pole ΔE = 25 keV 5 50 nA counts E triton

30 P+p Q = S Using 31 P( 3 He,t) 31 S for 30 P(p,  ) 31 S 31 P( 3 He,t) 31 S E 3He = 25 MeV 10° MLL Q3D nA ΔE = 10 keV PRELIMINARY!!! AP et al. 31 P( 3 He,t) 31 S E 3He = 20 MeV 1.5° Yale Split-Pole ΔE = 25 keV 5 50 nA 5/2– 1/2+ CM (deg) dσ/dΩ (μb/sr) counts E triton

+to better precision: 31 Cl (50 keV) 45 Cr (503 keV) 61 Ga (53 keV) 71 Br (568 keV) 83 Nb (315 keV) 86 Mo (438 keV) XRBs: desired measurements Parikh et al

+to better precision: 31 Cl (50 keV) 45 Cr (503 keV) 61 Ga (53 keV) 71 Br (568 keV) 83 Nb (315 keV) 86 Mo (438 keV) XRBs: selected recent activity masses from JYFLTRAP (2006 – 9) t 1/2 or mass from MSU (Bazin+08, Rogers+09 dedicated proposals for mass or structure (GSI, TRIUMF, ANL) 65 As, 66 Se, 62 Ge, 58 Zn Parikh et al S(a,p) 33 Cl -inverse (ANL) -normal (RIKEN) 30 S, 10 4 pps, 1.2 s 33 Cl, 2.5 s S1194 (TITAN) – AP, Ringle, Hager, Stage 1, 100 pps

XRBs: 15 O(a,γ) 19 Ne [more tomorrow from B. Davids] → important for breakout in XRBs (along with 14 O(a,p) 17 F), but not nova explosions → E x ( 19 Ne) = 4033 keV (E r = 504 keV, 3/2 + ) dominates rate for T < 0.6 GK comparing lower limits for rate e.g. for 4033: Γ a /Γ = 5x10 -6 vs 8x10 -5 [Fisker et al. 2007] Tan et al. (2007): 19 F( 3 He,t) 19 Ne*(a) 15 Notre Dame Γ a /Γ = 2.9(21)x10 -4 [<4.3x10 -4 Davids+03] [<6x10 -4 Rehm+03] Direct…hard… For DRAGON, need >10 10 pps [S813 – Buchmann et al., Stage 1] For TIGRESS-SHARC, need >10 6 pps [S900 – Fulton, Diget et al., Stage 1, 15 O( 6 Li,d)]

XRBs: 15 O(a,γ) 19 Ne [more tomorrow from B. Davids] → important for breakout in XRBs (along with 14 O(a,p) 17 F), but not nova explosions → E x ( 19 Ne) = 4033 keV (E r = 504 keV, 3/2 + ) dominates rate for T < 0.6 GK Tan et al. (2007): 19 F( 3 He,t) 19 Ne*(a) 15 Notre Dame Γ a /Γ = 2.9(21)x10 -4 [<4.3x10 -4 Davids+03] [<6x10 -4 Rehm+03] Tan et al preliminary Another measurement? at MLL: 2 – 3 weeks of beamtime (Chen, AP, Fulton, Laird, Bishop et al.) counts E triton

XRBs: 57 Cu(p,γ) 58 Zn → ‘important’ reaction from the XRB sensitivity study (AP et al. 2008) → no information available on 58 Zn above S p = 2280 keV → idea: in-flight gamma-ray spectroscopy of 58 Zn with GSI LOI (Domingo-Pardo, Galavíz, AP et al.) for (7 days) SM-Calculation, Fisker et al Advanced GAmma Tracking Array 60 triple clusters of Ge detectors (60x3x36 total segments) 50% eff., E res < 0.5%

New sensitivity studies: mergers of compact objects WD-WD: mechanism for type Ia SNe? 56 Ni production? (Raskin et al. 2010, Pakmor et al. 2010) WD-NS: most previous studies have only focused on dynamics (García- Berro et al. 2010) NS-NS: progenitors for GRBs? R-process sites? (Arnould 2007) Raskin et al. (2010)

New sensitivity studies: mergers of compact objects R. Longland (UPC) Tracer particles from SPH models (Loren et al. 2010, Guerrero et al. 2004)

Summary of events during the closure of Spanish airspace (Dec. 3 – 4): Friday, mid-afternoon: air-traffic controllers all over Spain start a covert strike. Friday, early evening: chaos in Spanish airports, thousands of travellers stranded. Friday, late evening: the Spanish government sends the Army to take control of the airports Saturday, very early morning: Spanish government declares ’state of alarm’ Saturday, morning: still chaos at the airports, no flights are leaving or arriving. FC Barcelona calls periodically to ask if they’ll be able to catch their flight; apparently, they keep being told that they will. Saturday, midday: FC Barcelona contact the RFEF (Spanish Football Federation) and are told that if they can’t fly, the Osasuna match will be played on Sunday; the team makes train and bus arrangements accordingly. Saturday, early afternoon: Osasuna declare that they haven’t been told the match is suspended, and that they will play on the evening or force Barça to forfeit the game. Saturday, after lunch: the RFEF calls Barça and tells them that they have to get to Pamplona and play in the evening. Saturday, 4 PM: Barça leaves the Camp Nou to catch a high-speed train to Zaragoza, where they’ll take a coach to Pamplona; estimated travel time: 4 hours and a half. Saturday, 8 PM: Barça arrives into the Reyno de Navarra stadium. Saturday, 8:45 PM: kickoff! (only 45 minutes after the original schedule Saturday evening: Barça win 3 - 0