SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.

Slides:



Advertisements
Similar presentations
SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.
Advertisements

CHOW TEST AND DUMMY VARIABLE GROUP TEST
EC220 - Introduction to econometrics (chapter 5)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
EC220 - Introduction to econometrics (chapter 7)
1 BINARY CHOICE MODELS: PROBIT ANALYSIS In the case of probit analysis, the sigmoid function F(Z) giving the probability is the cumulative standardized.
EC220 - Introduction to econometrics (chapter 2)
00  sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient (2010/2011.
TESTING A HYPOTHESIS RELATING TO THE POPULATION MEAN 1 This sequence describes the testing of a hypothesis at the 5% and 1% significance levels. It also.
EC220 - Introduction to econometrics (chapter 1)
1 INTERPRETATION OF A REGRESSION EQUATION The scatter diagram shows hourly earnings in 2002 plotted against years of schooling, defined as highest grade.
TESTING A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT This sequence describes the testing of a hypotheses relating to regression coefficients. It is.
BINARY CHOICE MODELS: LOGIT ANALYSIS
1 In the previous sequence, we were performing what are described as two-sided t tests. These are appropriate when we have no information about the alternative.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
DERIVING LINEAR REGRESSION COEFFICIENTS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
TOBIT ANALYSIS Sometimes the dependent variable in a regression model is subject to a lower limit or an upper limit, or both. Suppose that in the absence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy classification with more than two categories Original citation:
DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES This sequence explains how to extend the dummy variable technique to handle a qualitative explanatory.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: Tobit models Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 INTERACTIVE EXPLANATORY VARIABLES The model shown above is linear in parameters and it may be fitted using straightforward OLS, provided that the regression.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
1 t TEST OF A HYPOTHESIS RELATING TO A POPULATION MEAN The diagram summarizes the procedure for performing a 5% significance test on the slope coefficient.
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Simple regression model: Y =  1 +  2 X + u 1 We have seen that the regression coefficients b 1 and b 2 are random variables. They provide point estimates.
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
Chapter 5: Dummy Variables. DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 We’ll now examine how you can include qualitative explanatory variables.
POSSIBLE DIRECT MEASURES FOR ALLEVIATING MULTICOLLINEARITY 1 What can you do about multicollinearity if you encounter it? We will discuss some possible.
(1)Combine the correlated variables. 1 In this sequence, we look at four possible indirect methods for alleviating a problem of multicollinearity. POSSIBLE.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
COST 11 DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 This sequence explains how you can include qualitative explanatory variables in your regression.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 NONLINEAR REGRESSION Suppose you believe that a variable Y depends on a variable X according to the relationship shown and you wish to obtain estimates.
1 HETEROSCEDASTICITY: WEIGHTED AND LOGARITHMIC REGRESSIONS This sequence presents two methods for dealing with the problem of heteroscedasticity. We will.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years.
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
1 COMPARING LINEAR AND LOGARITHMIC SPECIFICATIONS When alternative specifications of a regression model have the same dependent variable, R 2 can be used.
VARIABLE MISSPECIFICATION II: INCLUSION OF AN IRRELEVANT VARIABLE In this sequence we will investigate the consequences of including an irrelevant variable.
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
VARIABLE MISSPECIFICATION I: OMISSION OF A RELEVANT VARIABLE In this sequence and the next we will investigate the consequences of misspecifying the regression.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N and a dummy variable for the type of curriculum (occupational / regular). N occupational school regular school COST

2 The specification of the model incorporates the assumption that the marginal cost per student is the same for occupational and regular schools. Hence the cost functions are parallel. SLOPE DUMMY VARIABLES N occupational school regular school COST

3 However, this is not a realistic assumption. Occupational schools incur expenditure on training materials that is related to the number of students. SLOPE DUMMY VARIABLES N occupational school regular school COST

4 Also, the staff-student ratio has to be higher in occupational schools because workshop groups cannot be, or at least should not be, as large as academic classes. SLOPE DUMMY VARIABLES N occupational school regular school COST

5 Looking at the scatter diagram, you can see that the cost function for the occupational schools should be steeper, and that for the regular schools should be flatter. SLOPE DUMMY VARIABLES N occupational school regular school COST

6 We will relax the assumption of the same marginal cost by introducing what is known as a slope dummy variable. This is NOCC, defined as the product of N and OCC. SLOPE DUMMY VARIABLES COST =  1 +  OCC +  2 N + NOCC + u

7 In the case of a regular school, OCC is 0 and hence so also is NOCC. The model reduces to its basic components. SLOPE DUMMY VARIABLES Regular school (OCC = NOCC = 0) COST =  1 +  OCC +  2 N + NOCC + u COST =  1 +  2 N + u

In the case of an occupational school, OCC is equal to 1 and NOCC is equal to N. The equation simplifies as shown. 8 SLOPE DUMMY VARIABLES Regular school (OCC = NOCC = 0) COST =  1 +  OCC +  2 N + NOCC + u COST =  1 +  2 N + u COST = (  1 +  ) + (  2 + )N + u Occupational school (OCC = 1; NOCC = N)

The model now allows the marginal cost per student to be an amount greater than that in regular schools, as well as allowing the overhead costs to be different. 9 SLOPE DUMMY VARIABLES Regular school (OCC = NOCC = 0) COST =  1 +  OCC +  2 N + NOCC + u Occupational school (OCC = 1; NOCC = N) COST =  1 +  2 N + u COST = (  1 +  ) + (  2 + )N + u

N  1 +  11 Occupational Regular  The diagram illustrates the model graphically. 10 SLOPE DUMMY VARIABLES COST

Here are the data for the first ten schools. Note the weird way in which NOCC is defined. 11 School TypeCOST N OCC NOCC 1Occupational345, Occupational 537, Regular 170, Occupational Regular100, Regular 28, Regular 160, Occupational 45, Occupational 120, Occupational61, SLOPE DUMMY VARIABLES

. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] N | OCC | NOCC | _cons | Weird or not, the procedure works very well. Here is the regression output using the full sample of 74 schools. We will begin by interpreting the regression coefficients. 12 SLOPE DUMMY VARIABLES

Here is the regression in equation form. 13 SLOPE DUMMY VARIABLES COST = 51,000 – 4,000OCC + 152N + 284NOCC ^

Putting OCC, and hence NOCC, equal to 0, we get the cost function for regular schools. We estimate that their annual overhead costs are 51,000 yuan and their annual marginal cost per student is 152 yuan. 14 SLOPE DUMMY VARIABLES Regular school (OCC = NOCC = 0) COST = 51,000 – 4,000OCC + 152N + 284NOCC COST = 51, N ^ ^

Putting OCC equal to 1, and hence NOCC equal to N, we estimate that the annual overhead costs of the occupational schools are 47,000 yuan and the annual marginal cost per student is 436 yuan. 15 SLOPE DUMMY VARIABLES Regular school (OCC = NOCC = 0) COST = 51,000 – 4,000OCC + 152N + 284NOCC COST = 51, N COST = 51,000 – 4, N + 284N = 47, N ^ ^ ^ Occupational school (OCC = 1; NOCC = N)

You can see that the cost functions fit the data much better than before and that the real difference is in the marginal cost, not the overhead cost. 16 SLOPE DUMMY VARIABLES COST occupational school regular school N

Now we can see why we had a nonsensical negative estimate of the overhead cost of a regular school in previous specifications. 17 SLOPE DUMMY VARIABLES COST occupational school regular school N

The assumption of the same marginal cost led to an estimate of the marginal cost that was a compromise between the marginal costs of occupational and regular schools. 18 SLOPE DUMMY VARIABLES COST occupational school regular school N

The cost function for regular schools was too steep and as a consequence the intercept was underestimated, actually becoming negative and indicating that something must be wrong with the specification of the model. 19 SLOPE DUMMY VARIABLES COST occupational school regular school N

We can perform t tests as usual. The t statistic for the coefficient of NOCC is 3.76, so the marginal cost per student in an occupational school is significantly higher than that in a regular school. 20. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] N | OCC | NOCC | _cons | SLOPE DUMMY VARIABLES

The coefficient of OCC is now negative, suggesting that the overhead costs of occupational schools are actually lower than those of regular schools. 21 SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] N | OCC | NOCC | _cons |

This is unlikely. However, the t statistic is only -0.09, so we do not reject the null hypothesis that the overhead costs of the two types of school are the same. 22 SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] N | OCC | NOCC | _cons |

We can also perform an F test of the joint explanatory power of the dummy variables, comparing RSS when the dummy variables are included with RSS when they are not. 23 SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e

The null hypothesis is that the coefficients of OCC and NOCC are both equal to 0. The alternative hypothesis is that one or both are nonzero. 24 SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e

The improvement in the fit on adding the dummy variables is the reduction in RSS. 25 SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e

The cost is 2 because 2 extra parameters, the coefficients of the dummy variables, have been estimated, and as a consequence the number of degrees of freedom remaining has been reduced from 72 to SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e

The first component of the denominator is RSS after the dummies have been added. 27 SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e

The denominator is RSS after the dummies have been added, divided by the number of degrees of freedom remaining. This is 70 because there are 74 observations and 4 parameters have been estimated. 28 SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e

The F statistic is therefore The critical vale of F(2,70) at the 0.1 percent level is SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e

Thus we conclude that at least one of the dummy variable coefficients is different from 0. We knew this already from the t tests, so in this case the F test does not actually add anything. 30 SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 5.3 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course EC2020 Elements of Econometrics