Solver & Optimization Problems n An optimization problem is a problem in which we wish to determine the best values for decision variables that will maximize.

Slides:



Advertisements
Similar presentations
The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case.
Advertisements

CCMIII U2D4 Warmup This graph of a linear programming model consists of polygon ABCD and its interior. Under these constraints, at which point does the.
Introduction to Management Science
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
SOLVING LINEAR PROGRAMS USING EXCEL Dr. Ron Lembke.
Operations Management Linear Programming Module B - Part 2
Managerial Decision Modeling with Spreadsheets
Chapter 2 Linear Programming Models: Graphical and Computer Methods © 2007 Pearson Education.
Chapter 2: Introduction to Linear Programming
An Introduction to Linear Programming : Graphical and Computer Methods
QM B Linear Programming
1 5. Linear Programming 1.Introduction to Constrained Optimization –Three elements: objective, constraints, decisions –General formulation –Terminology.
LINEAR PROGRAMMING: THE GRAPHICAL METHOD
Spreadsheet Modeling & Decision Analysis:
LINEAR PROGRAMMING INTRODUCTION
Chapter 3 An Introduction to Linear Programming
3 Components for a Spreadsheet Linear Programming Problem There is one cell which can be identified as the Target or Set Cell, the single objective of.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
1 1 Slides by John Loucks St. Edward’s University Modifications by A. Asef-Vaziri.
Graphical Solutions Plot all constraints including nonnegativity ones
Non-Linear Simultaneous Equations
1 1 Slide LINEAR PROGRAMMING: THE GRAPHICAL METHOD n Linear Programming Problem n Properties of LPs n LP Solutions n Graphical Solution n Introduction.
© Copyright 2004, Alan Marshall 1 Lecture 1 Linear Programming.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
Chapter 3 Introduction to Optimization Modeling
456/556 Introduction to Operations Research Optimization with the Excel 2007 Solver.
Introduction to Mathematical Programming OR/MA 504 Chapter 3.
START EXCEL BUILD OR RETRIEVE YOUR OPTIMIZATION MODEL SAVE YOUR WORKBOOK!! CHOOSE “Solver…” IN THE “Tools” MENU SPECIFY IN SOLVER DIALOG BOX: 1.CELL TO.
Solver & Optimization Problems n An optimization problem is a problem in which we wish to determine the best values for decision variables that will maximize.
Chapter 19 Linear Programming McGraw-Hill/Irwin
1 Chapter 8 Linear programming is used to allocate resources, plan production, schedule workers, plan investment portfolios and formulate marketing (and.
Special Conditions in LP Models (sambungan BAB 1)
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS ST. EDWARD’S UNIVERSITY.
Linear Programming Topics General optimization model LP model and assumptions Manufacturing example Characteristics of solutions Sensitivity analysis Excel.
1 1 Slide Linear Programming (LP) Problem n A mathematical programming problem is one that seeks to maximize an objective function subject to constraints.
We can make Product1 and Product2. There are 3 resources; Resource1, Resource2, Resource3. Product1 needs one hour of Resource1, nothing of Resource2,
MATH 527 Deterministic OR Graphical Solution Method for Linear Programs.
Chapter 7 Introduction to Linear Programming
1 1 Slide © 2005 Thomson/South-Western Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
LP: Summary thus far Requirements Graphical solutions Excel Sensitivity Analysis.
QMB 4701 MANAGERIAL OPERATIONS ANALYSIS
Linear Programming Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
3 Characteristics of an Optimization Problem General descriptionKPiller Illustration Decisions that must be made; represented by decision variables How.
Linear Programming Models: Graphical and Computer Methods
Sensitivity analysis continued… BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
Highline Class, BI 348 Basic Business Analytics using Excel Chapter 08 & 09: Introduction to Linear Programing 1.
Spreadsheet Modeling & Decision Analysis A Practical Introduction to Management Science 5 th edition Cliff T. Ragsdale.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Supplement 6 Linear Programming.
3 Components for a Spreadsheet Optimization Problem  There is one cell which can be identified as the Target or Set Cell, the single objective of the.
1. 2 We studying these special cases to: 1- Present a theoretical explanation of these situations. 2- Provide a practical interpretation of what these.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming Chapter 2.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
1 Introduction to Linear Programming Linear Programming Problem Linear Programming Problem Problem Formulation Problem Formulation A Simple Maximization.
1 1 Slide Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an.
Chapter 2 Linear Programming Models: Graphical and Computer Methods
MGTSC 352 Lecture 15: Aggregate Planning Altametal Case
An Introduction to Linear Programming
Decision Support Systems
An Introduction to Linear Programming Pertemuan 4
Solver & Optimization Problems
Wyndor Example; Enter data
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
BUS-221 Quantitative Methods
Presentation transcript:

Solver & Optimization Problems n An optimization problem is a problem in which we wish to determine the best values for decision variables that will maximize or minimize a performance measure subject to a set of constraints n A feasible solution is set of values for the decision variables which satisfy all of the constraints n An optimal solution is a feasible solution which achieves the maximization/minimization objective for the performance measure n Solver is an Excel Add-in which can identify the optimal solutions for a correctly defined spreadsheet model

Components of an Optimization Problem n Decision Variables: Changing cells, the input parameters users experiment with to try to improve the situation and which are under the user’s control n Constraint Cells: The performance measures that users watch to make sure that cell values remain in an appropriate range n Objective: Set orTarget cell, the key performance measure that the user wants to maximize or minimize

Influence Chart Notation n Changing Cells: No arrows are directed into these points. They are parameters that are under the manager’s control. (Denoted with squares) n Constraint Cells: Arrows must point into the cell. Changing cells must directly or indirectly influence constraint cells, so an attempt to attain feasibility can be made. (Denote with circles) n Target Cell: Cell that started the influence chart. Arrows must point into the target cell and changing cells must directly or indirectly influence it, so an attempt to optimize the target can be made. (Denote with polygon)

Overview of Mathematical Programming Optimization Techniques n Linear Programming: Continuous values for decision variablesContinuous values for decision variables Linear constraintsLinear constraints Single linear objectiveSingle linear objective n Nonlinear Programming: Continuous values for decision variablesContinuous values for decision variables Linear or nonlinear constraintsLinear or nonlinear constraints Single linear or nonlinear objectiveSingle linear or nonlinear objective

Overview of Mathematical Programming Optimization Techniques (continued) n Integer Programming: Integer values for decision variablesInteger values for decision variables Linear constraintsLinear constraints Single linear objectiveSingle linear objective n Goal Programming: Continuous values for decision variablesContinuous values for decision variables Linear or nonlinear constraintsLinear or nonlinear constraints Several linear objectivesSeveral linear objectives

Linearity n A linear function is where each variable appears in a separate term together with its constant coefficient. n The graph of a linear function of two variables is a straight line n An optimization problem is linear if: the objective is a linear function of the decision variablesthe objective is a linear function of the decision variables Each constraint cell is a linear function of the decision variablesEach constraint cell is a linear function of the decision variables

Integrality Considerations n In linear programming, the decision variables are not required to assume only integer values. Therefore often fractional solutions are identified as the optimal solution. n If one or more decision variables need to consider only integer values, the model becomes an integer programming problem. n If possible, fractional solutions can be rounded, interpreted as the average number or work-in- progress or ignored if the model is for planning purposes only

Solver Modeling Requirements n All components of the optimization problem must be on the same worksheet. Solver’s settings are saved with the sheet. n To speed up computation time, keep reports, data sets used to calculate parameter values, and other intermediate calculations on a different worksheet. n Solver’s constraint dialog box will not let you enter formulas. All formulas and calculations must be done on the worksheet. The constraint dialog box just compares cells to determine feasibility.

Graphical Solutions (for 2 decision variable problems) n Plot all constraints including nonnegativity ones n Determine the feasible region. (The feasible region is the set of feasible solution points) n Identify the optimal solution using either the isoprofit or isocost line method the isoprofit or isocost line method the extreme point method which is based on the property that an optimal solution will always exist on at least one of the corner points of the feasible region the extreme point method which is based on the property that an optimal solution will always exist on at least one of the corner points of the feasible region

n Any linear program falls in one of three categories: is infeasible (the problem is overconstrained so that no solution satisfies all the constraints) is infeasible (the problem is overconstrained so that no solution satisfies all the constraints) has a unique optimal solution or alternate optimal solutions has a unique optimal solution or alternate optimal solutions has an objective function that can be increased without bound has an objective function that can be increased without bound Types of LP Solutions

Example: Feasible Problem with Unique Solution n Solve graphically for the optimal solution: Max z = x 1 + x 2 Max z = x 1 + x 2 s.t. 4x 1 + 3x 2 > 12 s.t. 4x 1 + 3x 2 > 12 2x 1 + x 2 < 8 2x 1 + x 2 < 8 x 1, x 2 > 0 x 1, x 2 > 0

Example: Unique Optimal Solution n There is one point that satisfies all four constraints, and maximizes the objective. (0,8) is the optimal solution. x2x2x2x2 x1x1x1x1 4x 1 + 3x 2 > 12 2x 1 + x 2 <

Solver Result Messages n Solver found a solution. All constraints and optimality conditions are satisfied: Solver has correctly identified an optimal solution for the problem you have formulated. Note that there may be alternative optimal solutions possible however. n Solver has converged to the current solution. All constraints are satisfied: You have not selected the linear programming option in the Solver options. Thus nonlinear programming is being performed and this is the best solution Solver has found so far. It is not guaranteed to be the optimal one however. In RSPE, it will select the best possible engine for your problem so you do not have to worry about this.

Example: Infeasible Problem n Solve graphically for the optimal solution: Max z = x 1 + x 2 Max z = x 1 + x 2 s.t. 4x 1 + 3x 2 < 12 s.t. 4x 1 + 3x 2 < 12 2x 1 + x 2 > 8 2x 1 + x 2 > 8 x 1, x 2 > 0 x 1, x 2 > 0

Example: Infeasible Problem n There are no points that satisfy both constraints, hence this problem has no feasible region, and no optimal solution. x2x2x2x2 x1x1x1x1 4x 1 + 3x 2 < 12 2x 1 + x 2 >

Solver Result Messages n Solver could not find a feasible solution: You may have too many constraints, one of the constraints may be entered wrong (e.g. the inequality sign might be going the wrong way) or you may not have enough changing cells. n Set Cell values do not converge: Your model as formulated is unbounded. One or more constraint is missing from the problem or entered wrong. Often times the modeler has forgotten to check the Assume Nonnegativity option in Solver.

Example: Unbounded Problem n Solve graphically for the optimal solution: Max z = 3x 1 + 4x 2 Max z = 3x 1 + 4x 2 s.t. x 1 + x 2 > 5 s.t. x 1 + x 2 > 5 3x 1 + x 2 > 8 3x 1 + x 2 > 8 x 1, x 2 > 0 x 1, x 2 > 0

Example: Unbounded Problem n The feasible region is unbounded and the objective function line can be moved parallel to itself without bound so that z can be increased infinitely. x2x2x2x2 x1x1x1x1 3x 1 + x 2 > 8 x 1 + x 2 > 5 Max 3x 1 + 4x

Solver Result Messages n The Linearity Conditions required by this Solver Engine are not satisfied: Solver’s preliminary tests indicate that your model is not linear. This may be the case. However sometimes the test fails not due to nonlinearity, but due to poor scaling (e.g. some #s are in % and others in millions). If you think your model is linear, try resolving the model again. Some times Solver can find the solution the second time. If not, use the option in Solver called Use Automatic Scaling. Solver will attempt to rescale your data. If that doesn’t solve the problem, you will need to rescale the data yourself. In RSPE, Solver will identify the linearity for you in Guided Mode.

Solver Result Messages n Solver encountered an error value in a target or constraint cell: Using the optimization technique selected, a cell formula resulted in an error message and the algorithm cannot continue solving the problem. n This can occur if you have a nonlinear formula in a target or constraint cell and you try to solve the problem using the Standard simplex LP technique. Make the formula linear or switch to the Nonlinear solution technique. n This also happens when your formula results in a number that is not real (for instance, when you divide by zero). You will need to fix the logic and then close down and reopen Excel to clear the registry of this error message.