TED Thermomechanical Analyses Esposito Raffaele EN-STI-TCD.

Slides:



Advertisements
Similar presentations
Matt Rooney RAL The T2K Beam Window Matt Rooney Rutherford Appleton Laboratory BENE November 2006.
Advertisements

EUROnu Beam Window Studies Stress and Cooling Analysis Matt Rooney, Tristan Davenne, Chris Densham Strasbourg June 2010.
Thermal Shock Measurements for Solid High-Power Targets at High Temperatures J. R. J. Bennett 1, G. Skoro 2, J. Back 3, S. Brooks 1, R. Brownsword 1, C.
The Current T2K Beam Window Design and Upgrade Potential Oxford-Princeton Targetry Workshop Princeton, Nov 2008 Matt Rooney.
Internal H0/H- dump Cesare Maglioni, Melanie Delonca Thanks to: R. Chamizo, R. Versaci, O. Aberle, J. Borburgh.
Thermal Shock Measurements and Modelling for Solid High-Power Targets at High Temperatures J. R. J. Bennett 1, G. Skoro 2, J. Back 3, S. Brooks 1, R. Brownsword.
for a neutrinos factory
R.Valbuena NBI March 2002 CNGS Decay Pipe Entrance Window Structural and Thermal Analysis A.Benechet, P.Cupial, R.Valbuena CERN-EST-ME.
Design of an Aerospace Component
Studies of solid high-power targets Goran Skoro University of Sheffield HPT Meeting May 01 – 02, 2008 Oxford, UK.
Modelling shock in solid targets Goran Skoro (UKNF Collaboration, University of Sheffield) NuFact 06 UC Irvine, August 24-30, 2006.
Stresses in Thin-walled Pressure Vessels (I)
The JPARC Neutrino Target
1 THERMAL & MECHANICAL PRELIMINARY ANALYSIS ELM COIL ALTERNATE DESIGN Interim Review July 26-28, 2010 In-Vessel Coil System Interim Review – July 26-28,
Thermal Strains and Element of the Theory of Plasticity
Awake CNGS Window and Shutter Szymon Sroka, Antonio Perillo-Marcone — EN/STI/TCD Thermo-Mechanical Calculations.
Vacuum, Surfaces & Coatings Group Technology Department Glassy Carbon Tests at HiRadMat 14 March 2014 C. Garion2 Outline: Introduction Context: Transparent.
Study of a new high power spallation target concept
HMRT23: Overview of calculations performed HRMT23 Internal Review, 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado Paz EN-MME-EDS.
ANSYS Structural Analyses of sPhenix Magnet Coil at Full Current John Cozzolino July 10,
1 Thermo-Mechanical Analysis of ISIS TS2 Spallation Target Dan Wilcox High Power Targets Group, Rutherford Appleton Laboratory 5th High Power Targetry.
1 ME383 Modern Manufacturing Practices Lecture Note #3 Stress-Strain & Yield Criteria Dr. Y.B. Guo Mechanical Engineering The University of Alabama.
Felix Dietrich | AWLC14 | | Stress simulation in the ILC positron target with ANSYS Felix Dietrich (TH-Wildau), Sabine Riemann, Friedrich Staufenbiel.
Plans for collimator survival and SLAC tests J. L. Fernandez-Hernando STFC/ASTeC Daresbury Lab.
TCDIM François-Xavier Nuiry September 16 th 2015.
PSB dump: proposal of a new design EN – STI technical meeting on Booster dumps Friday 11 May 2012 BE Auditorium Prevessin Alba SARRIÓ MARTÍNEZ.
Harold G. Kirk Brookhaven National Laboratory Post-Irradiation Properties of Candidate Materials for High-Power Targets PAC05 Knoxville, TN May 16-20,
XFEL-INJ1/2 DUMPS Remarks / Requirements, Injector Beam Dynamic Review Meeting, DESY, Mon. 23. October 2006 ‹#› XFEL - INJ 1/2.
Heat load of the radiation cooled Ti target of the undulator based e+ source Felix Dietrich (DESY, TH-Wildau),Sabine Riemann(DESY), Andriy Ushakov(U- Hamburg),
F. Regis, LINAC4 – LBS & LBE LINES DUMP DESIGN.
Calculation of Beam loss on foil septa C. Pai Brookhaven National Laboratory Collider-Accelerator Department
Felix Dietrich | LCWS 2014 | | Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel.
Internal H0/H- dump M. Delonca, C. Maglioni On behalf of EN/STI Thanks to: A. Christov, S. Mathot, C. Pasquino, A. Patapenka.
STATUS OF H0/H- DUMPS M. Delonca – LIU meeting 29/11/2012 Thanks to: C. Maglioni, A. Patapenka, C. Pasquino, A. Perez, N. Mariani.
COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA.
Presentation at BBC, Linac 4 Commissioning Dump at 50 and 100MeV 1 Øyvind Dahle Lauten, EN-STI.
J-PARC neutrino experiment Target Specification Graphite or Carbon-Carbon composite cylindrical bar : length 900mm, diameter 25~30mm The bar may be divided.
Russian Research Center” Kurchatov Institute” Shock wave propagation near 450 GeV and 7 TeV proton beams in LHC collimator materials Alexander Ryazanov.
UNIT-01. SIMPLE STRESSES & STRAINS Lecture Number - 06 Prof. S.C.SADDU MECHANICAL DEPARTMENT SIT LONAVALA Strength of Materials.
F.Staufenbiel / EuCARD 2 / Heat load and stress studies of the ILC collimator G. Moortgat-Pick 1;2 S. Riemann 2, F. Staufenbiel 2, A. Ushakov.
3 MeV H - chopper beam dump Presentation by L.Bruno 1 3 MeV H - Chopper Beam Dump Pre-design study By L.Bruno AB/ATB M.Magistris AB/OP M.Silari TIS/RP.
Alessandro BertarelliTS department Seminar, 3 rd May 2006 EDMS Alessandro Dallocchio 1,2 Alessandro Bertarelli 1 1 TS department – Mechanical and Material.
A. Bertarelli – A. DallocchioWorkshop on Materials for Collimators and Beam absorbers, 4 th Sept 2007 LHC Collimators (Phase II): What is an ideal material.
Energy deposition as function of intensity and emittance  The damage potential of a beam does not only depend on the total intensity Energy deposition.
TPSG4 Run 3 Konstantinos Karagiannis, on behalf of the TCD Team – January 20 th 2016.
A = 122 mm2 Establish that Schmid’s law is obeyed.
High Power Target Experience with T2K Chris Densham T2K Beamline Collaboration including RAL / KEK / Kyoto.
Design for a 2 MW graphite target for a neutrino beam Jim Hylen Accelerator Physics and Technology Workshop for Project X November 12-13, 2007.
High Energy Dump of the Super Proton Synchrotron at CERN – Present and Future designs A. Perillo-Marcone (EN-STI) Contributions from several colleagues.
Dynamic structural analysis of absorbers with spectral-element code ELSE Yacine Kadi, Roberto Rocca, Wim Weterings - CERN Luca Massidda - CRS4 Workshop.
TS Cool Down Studies TSu Unit Coils (24-25) N. Dhanaraj and E. Voirin Tuesday, 10 March 2015 Reference: Docdb No:
Internal H0/H- dump M. Delonca On behalf of EN/STI Thanks to: A. Christov, C. Maglioni, S. Mathot, C. Pasquino, A. Patapenka.
Fluka Simulations: Electron spectrometer window for AWAKE Jose A. Briz and V. Vlachoudis.
Chiara Di Paolo EN-STI-TCD Material Choice for the Vacuum Window at the Exit of BTM.
Irradiated T2K Ti alloy materials test plans
New nTOF target: Design Issues
Thermomechanical Simulations of the PS Internal Dump
Failure and Failure Theories:
Scientific investigations performed at RRC KI for
M. Tomut GSI Helmholtzzentrum für Schwerionenforschung
Peter Loveridge High Power Targets Group
Thermo-mechanical analysis of the D3 dump in the TT2 line (PS)
Thermo-mechanical simulations jaws + tank
دانشگاه شهیدرجایی تهران
EUROnu Beam Window Studies Stress and Cooling Analysis
تعهدات مشتری در کنوانسیون بیع بین المللی
Structures and Mechanisms
SPL-SB and NF Beam Window Studies Stress Analysis
Copyright ©2014 Pearson Education, All Rights Reserved
Presentation transcript:

TED Thermomechanical Analyses Esposito Raffaele EN-STI-TCD

TED core Cu-Be Insert (C17200) Cu-Be Insert (C17200) Cu-OFE Al (6082 T6) Graphite (R7500) Beam type: LHC-Standard (25 ns) Particle energy: 450 GeV Protons per bunch: 1.2e11 Bunches per pulse: 288 Protons per pulse: 3.456e13 Bunch period: 25 ns Pulse time: 7.2 μs Pulse period: 21.6 s Energy per pulse: MJ Average power: kW

Graphite – Steady State Thermal Analysis Max. Temperature: °C

Graphite – Transient Thermal Analysis Max. Temp.: °C

Graphite – Transient Structural Analysis Max. Compressive Principal Stress: MPa

Graphite – Transient Structural Analysis Max. Tensile Principal Stress: MPa

Graphite – Transient Structural Analysis Max. Von Mises Equivalent Stress: MPa

Aluminum – Steady State Thermal Analysis Max. Temperature: °C

Aluminum – Transient Thermal Analysis Max. Temperature: °C

Aluminum – Transient Structural Analysis Max. Compressive Principal Stress: MPa

Aluminum – Transient Structural Analysis Max. Tensile Principal Stress: MPa

Aluminum – Transient Structural Analysis Max. Von Mises Equivalent Stress: MPa

Cu-Be – Steady State Thermal Analysis Max. Temperature: °C

Cu-Be – Transient Thermal Analysis Max. Temperature: °C

Cu-Be – Transient Structural Analysis Max. Compressive Principal Stress: MPa

Cu-Be – Transient Structural Analysis Max. Tensile Principal Stress: MPa

Cu-Be – Transient Structural Analysis Max. Von Mises Equivalent Stress: MPa

Copper – Steady State Thermal Analysis Max. Temperature: °C

Copper – Transient Thermal Analysis Max. Temperature: °C

Copper – Transient Structural Analysis Max. Compressive Principal Stress: MPa

Copper – Transient Structural Analysis Max. Tensile Principal Stress: MPa

Copper – Transient Structural Analysis Max. Von Mises Equivalent Stress: MPa

Summary MaterialGraphiteAluminumCu-BeCopper Max. Temp. [°C]631.19* Min. Princ. [MPa] *505.89*179.12* Compr. Strength (Y) – (Y) – (Y) – 240 Max. Princ. [MPa] Max. V. M. [MPa] Tensile Strength (Y) – (Y) – (Y) – 240 *We shouldn’t have oxidation problems since the graphite stays beyond 400 °C for only 8 milliseconds per pulse *Stresses with a strong hydrostatic component

Thank you for your attention