1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.

Slides:



Advertisements
Similar presentations
Chapter 10, part D. IV. Inferences about differences between two population proportions You will have two population proportions, p1 and p2. The true.
Advertisements

1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning 
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Inference about the Difference Between the
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide MA4704 Problem solving 4 Statistical Inference About Means and Proportions With Two Populations n Inferences About the Difference Between Two.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
Sampling Distribution of If and are normally distributed and samples 1 and 2 are independent, their difference is.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2009 Econ-2030-Applied Statistics-Dr. Tadesse. Chapter 11: Comparisons Involving Proportions and a Test of Independence n Inferences About.
Two Sample Hypothesis Testing for Proportions
Statistical Inference About Means and Proportions With Two Populations
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Pertemuan 09 Pengujian Hipotesis Proporsi dan Data Katagorik Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Pengujian Hipotesis Proporsi dan Beda Proporsi Pertemuan 21 Matakuliah: I0134/Metode Statistika Tahun: 2007.
Chapter 11a: Comparisons Involving Proportions and a Test of Independence Inference about the Difference between the Proportions of Two Populations Hypothesis.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide Slides by John Loucks St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 10 Statistical Inference About Means and Proportions With Two Populations n Inferences About the Difference.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 11 Inferences About Population Variances n Inference about a Population Variance n.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
© 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide Chapter 11 Comparisons Involving Proportions n Inference about the Difference Between the Proportions of Two Populations Proportions of Two Populations.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
© 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Sampling Distribution of If and are normally distributed and samples 1 and 2 are independent, their difference is.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 11 Section 3 – Slide 1 of 27 Chapter 11 Section 3 Inference about Two Population Proportions.
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
Slides by JOHN LOUCKS St. Edward’s University.
St. Edward’s University
Statistics for Business and Economics (13e)
Statistics for Business and Economics (13e)
Slides by JOHN LOUCKS St. Edward’s University.
Chapter Outline Inferences About the Difference Between Two Population Means: s 1 and s 2 Known.
Inference for Proportions
St. Edward’s University
Presentation transcript:

1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. John Loucks St. Edward’s University SLIDES. BY

2 2 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Inferences About the Difference Between Two Population Proportions Two Population Proportions Chapter 10, Part B Inference About Means and Proportions with Two Populations

3 3 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Inferences About the Difference Between Two Population Proportions n Interval Estimation of p 1 - p 2 n Hypothesis Tests About p 1 - p 2

4 4 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Expected Value Sampling Distribution of where: n 1 = size of sample taken from population 1 n 2 = size of sample taken from population 2 n 2 = size of sample taken from population 2 n Standard Deviation (Standard Error)

5 5 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. If the sample sizes are large, the sampling distribution If the sample sizes are large, the sampling distribution of can be approximated by a normal probability of can be approximated by a normal probability distribution. distribution. If the sample sizes are large, the sampling distribution If the sample sizes are large, the sampling distribution of can be approximated by a normal probability of can be approximated by a normal probability distribution. distribution. The sample sizes are sufficiently large if all of these The sample sizes are sufficiently large if all of these conditions are met: conditions are met: The sample sizes are sufficiently large if all of these The sample sizes are sufficiently large if all of these conditions are met: conditions are met: n1p1 > 5n1p1 > 5n1p1 > 5n1p1 > 5 n 1 (1 - p 1 ) > 5 n2p2 > 5n2p2 > 5n2p2 > 5n2p2 > 5 n 2 (1 - p 2 ) > 5 Sampling Distribution of

6 6 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Sampling Distribution of p 1 – p 2

7 7 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Interval Estimation of p 1 - p 2 n Interval Estimate

8 8 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Market Research Associates is conducting research Market Research Associates is conducting research to evaluate the effectiveness of a client’s new adver- tising campaign. Before the new campaign began, a telephone survey of 150 households in the test market area showed 60 households “aware” of the client’s product. Interval Estimation of p 1 - p 2 n Example: Market Research Associates The new campaign has been initiated with TV and The new campaign has been initiated with TV and newspaper advertisements running for three weeks.

9 9 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. A survey conducted immediately after the new A survey conducted immediately after the new campaign showed 120 of 250 households “aware” of the client’s product. Interval Estimation of p 1 - p 2 n Example: Market Research Associates Does the data support the position that the Does the data support the position that the advertising campaign has provided an increased awareness of the client’s product?

10 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Point Estimator of the Difference Between Two Population Proportions = sample proportion of households “aware” of the = sample proportion of households “aware” of the product after the new campaign product after the new campaign = sample proportion of households “aware” of the = sample proportion of households “aware” of the product before the new campaign product before the new campaign p 1 = proportion of the population of households p 1 = proportion of the population of households “aware” of the product after the new campaign “aware” of the product after the new campaign p 2 = proportion of the population of households p 2 = proportion of the population of households “aware” of the product before the new campaign “aware” of the product before the new campaign

11 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part (.0510) Interval Estimation of p 1 - p 2 Hence, the 95% confidence interval for the difference Hence, the 95% confidence interval for the difference in before and after awareness of the product is -.02 to For  =.05, z.025 = 1.96:

12 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Hypothesis Tests about p 1 - p 2 n Hypotheses H 0 : p 1 - p 2 < 0 H a : p 1 - p 2 > 0 Left-tailedRight-tailedTwo-tailed We focus on tests involving no difference between the two population proportions (i.e. p 1 = p 2 )

13 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Hypothesis Tests about p 1 - p 2 Standard Error of when p 1 = p 2 = p Standard Error of when p 1 = p 2 = p Pooled Estimator of p when p 1 = p 2 = p Pooled Estimator of p when p 1 = p 2 = p

14 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Hypothesis Tests about p 1 - p 2 Test Statistic Test Statistic

15 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Can we conclude, using a.05 level of significance, Can we conclude, using a.05 level of significance, that the proportion of households aware of the client’s product increased after the new advertising campaign? Hypothesis Tests about p 1 - p 2 n Example: Market Research Associates

16 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Hypothesis Tests about p 1 - p 2 1. Develop the hypotheses. p -Value and Critical Value Approaches p -Value and Critical Value Approaches H 0 : p 1 - p 2 < 0 H a : p 1 - p 2 > 0 p 1 = proportion of the population of households p 1 = proportion of the population of households “aware” of the product after the new campaign “aware” of the product after the new campaign p 2 = proportion of the population of households p 2 = proportion of the population of households “aware” of the product before the new campaign “aware” of the product before the new campaign

17 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Hypothesis Tests about p 1 - p 2 2. Specify the level of significance.  = Compute the value of the test statistic. p -Value and Critical Value Approaches p -Value and Critical Value Approaches

18 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Hypothesis Tests about p 1 - p 2 5. Determine whether to reject H 0. We cannot conclude that the proportion of households aware of the client’s product increased after the new campaign. 4. Compute the p –value. For z = 1.56, the p –value =.0594 Because p –value >  =.05, we cannot reject H 0. p –Value Approach p –Value Approach

19 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Hypothesis Tests about p 1 - p 2 Critical Value Approach Critical Value Approach 5. Determine whether to reject H 0. Because 1.56 < 1.645, we cannot reject H 0. For  =.05, z.05 = Determine the critical value and rejection rule. Reject H 0 if z > We cannot conclude that the proportion of households aware of the client’s product increased after the new campaign.

20 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. End of Chapter 10 Part B