Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE.

Slides:



Advertisements
Similar presentations
Astronomy Notes to Accompany the Text
Advertisements

Ch. 2 The Copernican Revolution (Stonehenge, England)
Kepler’s laws.
From Aristotle to Newton
Gravitation and the Waltz of the Planets
The Origin of Modern Astronomy
Physics 202: Introduction to Astronomy – Lecture 4 Carsten Denker Physics Department Center for Solar–Terrestrial Research.
Astronomy 101 Section 020 Lecture 4 Gravitation and the Waltz of the Planets John T. McGraw, Professor Laurel Ladwig, Planetarium Manager.
Chapter 4 Gravitation and the Waltz of the Planets.
History of Astronomy  Motions of the sky caused by and controlled by gods. Big Horn Medicine Wheel Temple at Caracol.
Do our planets move?.
Chapter 2 The Copernican Revolution. Units of Chapter Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model of the Solar System.
Gravitation and the Waltz of the Planets Chapter Four.
Galileo, Tycho, and Kepler and Kepler. Galileo’s Experiments ( ) Galileo tried something new – doing experiments! Dropping balls to measure gravity.
FOUNDATIONS OF ASTRONOMY Casey Trout. ANCIENT BELIEFS Ancient cultures learned how to predict the weather, the seasons, time of day, & eclipses In Central.
CHAPTER 2: Gravitation and the Waltz of the Planets.
Ancient astronomy Geocentric Heliocentric Mass and Gravity GalileoKepler Newton $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400 $600 $ 600$600.
Renaissance Astronomy Nicholas Copernicus (Niklas Koppernigk) Developed a mathematical model for a Heliocentric solar system.
Chapter 2: The Rise of Astronomy. Ancient Roots: Early Homo-Sapiens.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 2.
Today’s topics Orbits Parallax Angular size and physical size Precession Reading sections 1.5, 2.6,
Chapter 2 The Copernican Revolution. Units of Chapter Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model of the Solar System.
Chapter 2.
The History of Astronomy brought to you by: Mr. Youngberg.
Reminders Answering cell phones during class shaves a little off your grade each time. Answering cell phones during class shaves a little off your grade.
Ast 1001 lecture Sept 11 (kd) 3. The Copernican Revolution and Newton’s Revolution or, The Revolution Revolution: what revolves about what, and.
The Dead Guys.
Gravitation and the Waltz of the Planets Kepler, Galileo and Newton.
History of Astronomy. Our Universe Earth is one of nine planets that orbit the sun The sun is one star in 100 billion stars that make up our galaxy- The.
Astronomy The Science that Studies The Universe Ancient Greeks To Isaac Newton.
Chapter 2 The Copernican Revolution. Units of Chapter Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model of the Solar System.
The Copernican revolution. Discussion What is the simplest universe imaginable: one where making predictions about the future would be the easiest thing.
Bellwork 1.Who is credited with the revolutionary model of a HELIOCENTRIC solar system? A. Aristotle B. Ptolemy C. Galileo D. Copernicus 2.The planets.
Origin of Modern Astronomy. Key Terms 1. Astronomy – It is the science that studies the universe. It includes the observation and interpretation of celestial.
© 2013 Pearson Education, Inc. Astronomy: A Beginner’s Guide to the Universe Seventh Edition © 2013 Pearson Education, Inc. Chapter 1 Lecture The Copernican.
Chapter 2 The Copernican Revolution. Chapter 2 Learning Objectives  Know the differences and similarities between the geocentric and heliocentric models.
FAMOUS ASTRONOMERS  The name "planet" comes from the Greek term π λανήτης (plan ē t ē s), meaning "wanderer".  Came up with geocentric (earth center)
Alta High Astronomy Chapter 2 The History of Astronomy.
CHAPTER 4 Gravitation and the Waltz of the Planets CHAPTER 4 Gravitation and the Waltz of the Planets.
Early Western people believed that the Earth was the center of the universe. That is called a geocentric system. Ptolemy, a Greek astronomer believed that.
The Copernican Revolution
NATS From the Cosmos to Earth Nicholas Copernicus ( ) - wanted better way to predict planetary positions - adopted Sun-centered planetary.
Chapter 1: The Copernican Revolution. The Motions of the Planets The Birth of Modern Astronomy The Laws of Planetary Motion Newton’s Laws Summary of Chapter.
Explaining the Universe. Pioneer and Voyager missions Pioneer 10 and 11 Voyager 1 and 2 Portrait of Solar System.
FAMOUS ASTRONOMERS  Believed in geocentric universe  earth was the center  used circular orbits with epicycles  was supported by the church for.
Quiz #2 Review Giants of Science (Ch. 2), Gravity and Motion (Ch. 3) Light and Atoms (Ch. 4) Thursday 29 September 2011 Also study the Quiz 1 recap notes.
Ch 22 Astronomy. Ancient Greeks 22.1 Early Astronomy  Astronomy is the science that studies the universe. It includes the observation and interpretation.
Foundations-Copernican Revolution Lecture 3: Newton: Gravity and the Laws of Motion.
Developing the Science of Astronomy (Chapter 4). Student Learning Objectives Compare ancient and modern theories of the solar system Apply Kepler’s Laws.
Chapter 1 The Copernican Revolution. The planets’ motions Wanderers among the stars Retrograde motion.
1 The Dead Guys. 2 Timeline 3 Ancient Astronomy.
Unit 3 Lesson 2 Kepler’s Laws of Planetary Motion.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 2.
CHAPTER 2: Gravitation and the Waltz of the Planets.
Inquiry Imagine what would it have been like to see a solar eclipse in ancient times? Imagine what would it have been like to see a solar eclipse in ancient.
Astronomy HISTORY OF ASTRONOMY. The scientific method had not been invented yet Most of the ideas of the time were based on Pure Thought The ideas of.
Ancient Greeks Early Astronomy  Astronomy is the science that studies the universe. It includes the observation and interpretation of celestial bodies.
Observing the Solar System A History. Geocentric Model Early astronomers believed that Earth was actually the center of the universe. As early as 6000.
CHAPTER 2: Gravitation and the Waltz of the Planets.
© 2017 Pearson Education, Inc.
Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE.
Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE.
Origin of Modern Astronomy
The History of Astronomy
Chatfield Senior High Physics
Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE.
Chapter 3 Analyzing Scales and Motions of the Universe
CHAPTER 27.2: Gravitation and the
Chapter 2 Sections
Presentation transcript:

Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE

The Americas Machu Picchu – the Intihuatana or “hitching post of the sun” Several of the major cultures had complex structures that reveal astronomical alignments Marked solstices, equinoxes, and positions of the Moon.

The Caracol at Chitzen Itza, Yucatan ~ 800 AD Venus was the ‘Great or Ancient Star”. Observations from slits in circular structure used to record times of its rising and setting. Measurements of Venus and moon used to establish a calendar and for timekeeping.

N. America – Medicine Wheels in western plains Stone alignments in a spoked wheel pattern some with large cairns that marked sight lines All are on high places with a clear view of the horizon. Medicine Wheel in Big Horn Mtns, Wyoming Date from ~

Geocentric or Ptolemaic model Problem – apparent backward motions of planets -- retrograde

The Heliocentric Model Copernicus Kept circular orbits and epicycles, explained retrograde motion

Galileo 1564 – 1642

Galileo’s famous observations with the telescope Surface of the Moon – mountains, craters Phases of Venus – Saturn had “ears” 4 moons of Jupiter Milky Way made of 1000’s of stars Sun was blemished

Galileo’s 3 decisive discoveries for Heliocentric model : 1. Surface features on the Moon 2. Jupiter’s moons and motions 3. “Full” phases of Venus None of these made sense in geocentric model, but they were all perfectly OK in Copernicus’ universe. The phases of Venus are especially decisive.

Tycho Brahe 1546 – 1601

Brahe couldn’t measure stellar parallax and therefore couldn’t confirm Copernican model -- proposed his own

Thomas Digges – English mathematician, astronomer 1546 – 1595 Contemporary with Brahe and Galileo, but his model goes a step further "This orb of stars fixed infinitely up extends itself in altitude spherically, and therefore immovable the palace of felicity garnished with perpetual shining glorious lights innumerable, far excelling over [the] sun both in quantity and quality the very court of celestial angels, devoid of grief and replenished with perfect endless joy, the habitacle for the elect."

Johannes Kepler The Astronomical Unit ( 1 AU) distance Earth to the Sun 93 x 10 6 mi, 150 x 10 6 km

Kepler’s 3 laws of planetary motion 1. The orbits of the planets are ellipses with the Sun at one focus 2. The line joining the planet and the Sun sweeps out equal areas in equal times. 3. Period of revolution proportional to distance from Sun If a = average distance from the Sun and P = orbital period, then P 2 = (constant) x a 3 If P in years, a in astronomical units then P 2 = a 3

Kepler’s third law -- the numbers a (AU) P (yr) a 3 P 2 MERCURY VENUS EARTH MARS JUPITER SATURN

Isaac Newton Astronomer, mathematician, physicist – father of physics, mechanics Laws of Motion and Law of Gravity

The 3 Laws of Motion and the Law of Gravity Some basic concepts: Speed – how fast an object is moving mi/hr, km/s Velocity -- vector – speed + direction Acceleration – rate of change in velocity Inertia – property of an object resists change in state of rest or motion 1 st Law -- An object remains at rest or in motion (in a straight line) unless acted upon by an outside force

2 nd Law -- The acceleration of an object is directly proportional to the force acting on it. F = ma Defines: Force Mass (m) - total amount of material in an object weight depends on the force of gravity on an object with mass m 3 rd Law -- (Law of Reaction) Whenever a force is exerted on an object there is an equal and opposite reaction

Law of Gravity -- the force of attraction between two objects is directly proportional to their masses and inversely proportional to the square of the distance between them ( attractive force between M and m ) F Grav = G x M x m / (distance) 2. Laws of Motion + Gravity explained Kepler’s Laws Newton’s form of Kepler’s 3 rd law: P 2 = 4  2 /  G x a 3 / (M 1 + M 2 ) Why the difference ? Orbital Motion is due to inertia plus gravity – the force of acceleration towards the center -- centripetal acceleration