Roma – 15 Giugno 2015 HIRES: System summary. Roma – 15 Giugno 2015 Outline Modular configuration Instrument Description System Architecture Cost estimation.

Slides:



Advertisements
Similar presentations
HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
Advertisements

GLAO instrument specifications and sensitivities
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
NIR INSTRUMENT FOR GLAO Takashi Hattori, Iwata Ikuru (Subaru Telescope)
Área de Instrumentación NAHUAL Mechanical Concept Current Status F. Javier Fuentes Instituto de Astrofísica de Canarias September
 Cambridge  9 Sep 2012  ASz  The GMT-Consortium Large Earth Finder (G-CLEF): A Versatile, Optical Echelle Spectrograph for the GMT Andrew Szentgyorgyi.
Polarimetry Christoph Keller. Polarimetry Requirements Polarization sensitivity: amount of fractional polarization that can be detected above a (spatially.
NGAO Instrumentation Overview September 2008 Updated Sean Adkins.
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
1 NGAO Instrumentation Studies Overview By Sean Adkins November 14, 2006.
IRMS Optical Subsystem Review. The Charter Confirm that the MOSFIRE design is a feasible baseline for IRMS (yes) Verify that the MOSFIRE design can achieve.
NGAO Instrumentation Preliminary Design Phase Planning September 2008 Sean Adkins.
Astronomical Spectroscopy
KMOS Instrument Science Team Review Instrument overview.
Grazing-incidence design and others L. Poletto Istituto Nazionale per la Fisica della Materia (INFM) Department of Electronics and Informatics - Padova.
Astronomical Instrumentation Often, astronomers use additional optics between the telescope optics and their detectors. This is called the instrumentation.
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
2.4m Telescope Group Yunnan Observatory of CAS Status of LiJET Project & The Coude Echelle Spectrograph for the Lijang 1.8m Telescope China-Japan Collaboration.
HARPS... North Geneva Observatory, Switzerland Francesco Pepe et al.
Physical Modelling of Instruments Activities in ESO’s Instrumentation Division Florian Kerber, Paul Bristow.
T-REX OU4 HIRES The high resolution spectrograph for E-ELT E. Oliva, T-REX meeting, Sexten Pustertal (I)1.
Big Bear Solar Observatory NST Main Features  All reflecting, off-axis Gregory optical configuration  PM: 1.6 m clear aperture with f/2.4  Figuring.
The Field Camera Unit Project definition, organization, planning S. Scuderi INAF – Catania.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
2009 Aug 20 — SAC update WFOS/MOBIE1 WFOS/Multi-Object Broadband Imaging Echellette MOBIE Team, to date: PI / optical designer: Rebecca Bernstein Project.
MIRHES (Mid-IR high-resolution echelle spectrometer) MIRHES team.
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
SSG Workshop 경희대 김은빈 김민배 천경원 The GMT-CfA, Carnagie, Catolica, Chicago Large Earth Finder (G-CLEF)
The quest for precision High Aperture implies lot of photons: High S/N, high precision Open this new parameter space LEGACY Precision: Fidelity, Doppler.
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
Near Infrared Spectro-polarimeter (NIRSP) Conceptual Design Don Mickey Jeff Kuhn Haosheng Lin.
Integral Field Spectrograph Eric PRIETO CNRS,INSU,France,Project Manager 11 November 2003.
GMTNIRS (Giant Magellan Telescope Near-IR Spectrograph) Survey Science Group Workshop 3 조 김상혁 김재영 최나현
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
HIGH REDSHIFT GALAXIES and COSMOLOGY SUMMARY. RESOLUTION > (IGM metals, molecules, constants) ( would be fine too – turbulence?
NIRSpec Operations Concept Michael Regan(STScI), Jeff Valenti (STScI) Wolfram Freduling(ECF), Harald Kuntschner(ECF), Robert Fosbury (ECF)
An IFU for IFOSC on IUCAA 2m Telescope
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
INS NIRSpec, 12 May 2005 Introduction to NIRSpec Michael Regan.
MIRI Optical System CDR, 6 th & 7 th December 2006 Mid InfraRed Instrument 07-1 Optical System Critical Design Review (CDR) TIPS Presentation: Margaret.
The Study of IFU for the Li Jiang 2.4m Telescope ZHANG Jujia 张居甲 Yun Nan Astronomical Observatory. CAS Sino-French IFU Workshop Nov Li Jiang.
K. G. Strassmeier, Polarimetry with ELTs, Utrecht, Nov./Dec Smart Focal Plane Spectropolarimetry with the E-ELT Klaus G. Strassmeier, Leibniz-Institute.
KMOS Instrument Overview & Data Processing Richard Davies Max Planck Institute for Extraterrestrial Physics  What does KMOS do?  When will it do it?
The Prime Focus Imaging Spectrograph Design and Capabilities
MAXIM Periscope ISAL Study Highlights ISAL Study beginning 14 April 2003.
Oct 26, 2007SALT Workshop UKZN1 Robert Stobie Prime Focus Imaging Spectrograph Science Rationale Modes –Fabry-Perot Spectral Imaging –Grating Spectroscopy;
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
AURA New Initiatives Office. GSMT SWG Meeting L. Stepp, July 30, 2002 NSF Science Working Group Support Available from AURA NIO Available Personnel Current.
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
E-ELT-HIRES possible design and capabilities E. Oliva (INAF-Firenze) B. Delabre (ESO) E. Oliva B. Delabre, ELT-HIRES, Cambridge1 o A very brief.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Astronomical Observational Techniques and Instrumentation
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
The Field Camera Unit Results from technical meeting S. Scuderi INAF – Catania.
“Phase C” Design of the JWST/FGS Tunable Filter Imager TIPS/JIM June 15, 2006 Alex Fullerton STScI / UVic.
PACS IIDR 01/02 Mar 2001 Optical System Design1 N. Geis MPE.
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
NIRSpec - the JWST Multi-Object Spectrograph P. Ferruit (ESA), S. Arribas (CSIS), S. Birkmann (ESA), T. Böker (ESA), A. Bunker (Oxford), S. Charlot (IAP),
Big Bear Solar Observatory Some ground-based technology developments that will propel solar physics Phil Goode for Jeff Kuhn Big Bear Solar Observatory.
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
Single Object Spectroscopy and Time Series Observations with NIRSpec
CASE spectrograph Spectrograph Optical Specifications
Alex Fullerton STScI / NIRISS Team Lead
Single Object & Time Series Spectroscopy with JWST NIRCam
ESAC 2017 JWST Workshop JWST User Documentation Hands on experience
Laser(s) for Keck Observatory’s Next Generation AO (NGAO) System
An IFU slicer spectrometer for SNAP
Overview Instrument Role Science Niches Consortium science
Astronomical Observational Techniques and Instrumentation
Presentation transcript:

Roma – 15 Giugno 2015 HIRES: System summary

Roma – 15 Giugno 2015 Outline Modular configuration Instrument Description System Architecture Cost estimation Conclusions 2

Roma – 15 Giugno 2015 Top level requirement Requirement HR Single Obj. Mode MR Multiplexed Mode HR AO-assisted IFU Polarimetry mode Spectral Res>= 150’000>= 100’00010’000-20’000>= 100’000n.a. Multiplexing (few arcmin FoV) IFU4 Spectral coverage (mm) Min Blue wavel 370 nm390 nm Allowed wavel gaps No substantial Wavelength calibration Espresso template for the VIS TBD for IR Espresso template for the VISible, TBD for IR Stability10cm/s for VIS (goal 2cm/2), TBD for IRn.a.10cm/sn.a. throughputEspresso template for the VIS (12%), ECHO template for IR (8mag s/n 10’000 per res element in 100min or better) 80% (BVRIYJH) 20% (K)

Roma – 15 Giugno 2015 E-ELT I/F EELT Interfaces for Scientific InstrumentsE-TRE-ESO /07/10 Optical Linear FOV Ø mm Focal length mm Focal ratio F/17.48 Plate scale 0,3 Asec/mm Stability 0.3 arcsec rms With GLAO 10-50mas rms

Roma – 15 Giugno 2015 Fiber Efficiency

Roma – 15 Giugno 2015 Instrument Layout

Roma – 15 Giugno 2015 Configurations Fiber MOS and IFU only in YJH

Roma – 15 Giugno 2015 Configurations MOS and IFU Preserved UB + VRI +K YJH

Roma – 15 Giugno 2015 Configurations

Roma – 15 Giugno 2015

HIRES Instrument Product Tree HIRES Instrument Spectrograph Modulae B Spectrograph VRI Spectrograph YJH Spectrograph K Spectrograph common elements Front endFiber optics CalibrationSoftware Polarimetric pickoff Exposure Meters 11

Roma – 15 Giugno 2015 Instrument Layout

Roma – 15 Giugno 2015 Slit illumination

Roma – 15 Giugno 2015 Front end

Roma – 15 Giugno 2015 Slicing

Roma – 15 Giugno 2015 Scrambling

Roma – 15 Giugno 2015 Spectrographs

Roma – 15 Giugno 2015 preslit

Roma – 15 Giugno 2015 Mosaic Gratings

Roma – 15 Giugno 2015 Detectors e2v 9k X 9k used in ESPRESSO HAWAII 4RG

Roma – 15 Giugno 2015 Main Parameters ParameterESPRESSO-VLTHIRES Input slit length10 mm31 mm Beam aperture at slitF/10 x F/15 Main collimatorParabola f=3m double pass Collimated beam on main disperser300mm x 200mm Main disperserR4 echelle, 1.2m x 0.2m Dichroics and field lenses/mirrorsClose to the intermediate focus Transfer collimatorSphere f=1.5mParabola f=2.25m Collimated beam after transfer collimator150mm x 100mm225mm x 150mm Collimated beam after cross-disperser150mm x 150mm120mm x 205mm Beam on detectorF/2.6 x F/2.6 F/1.7 x F/1.0 (IR) F/2.2 x F/1.3 (VIS) Detector9k 2 9cm x 9cm 4k 2 6cm x 6cm (IR) 9k 2 9cm x 9cm (VIS)

Roma – 15 Giugno 2015 Polarimetric arm

Roma – 15 Giugno 2015 MOS

Roma – 15 Giugno 2015 System Team It is integral part of the HIRES Project Office It is lead by the HIRES System Engineer and SW System Engineer It is composed by –Architects (depending on project phase) Optical, Mechanical, Electrical, Thermal, Software –AIV manager –SW team –Sub-System Engineers 24

Roma – 15 Giugno 2015 Fiber Link Fibers Scrambler Shutter SS Project Management SSystem Engineering PA/QA AIV Calibration Optical Components Optical Bench Calib Lamp Laser Comb Fibers Fabry Perot SS Project Management SSystem Engineering PA/QA AIV Science Support Software OPS DRS DAS SS Project Management SW System Engineering # Spectr Optical Components Optical Bench Dewar and Detectors Thermal sub-sys. Slit Subsystem Echelle Vacuum Vessel SS Project Management SSystem Engineering PA/QA AIV Science Support Optical Architecture Thermal Architecture Mechanical Architecture Electronical Architecture Software Architecture Exposure Meters SS Project Management SSystem Engineering PA/QA AIV Optical Components TCCD Optical Bench #: B, VRI, YJH, K Front End ADC Optical Components Thermal sys. Dichroics Optical Bench TCCD Toggling Mechanicsm MOS? SS Project Management SSystem Engineering PA/QA AIV Optical Architecture Thermal Architecture Mechanical Architecture Electronical Architecture Software Architecture Polarimetric pickoff Optical Components Optical Bench Fibers Deployment mech SS Project Management SSystem Engineering PA/QA AIV 25 Product Breakdown Structure

Roma – 15 Giugno 2015 Hardware cost estimation UnitCostReduced (2 mod) FEk€ 3.710,00k€ 2.710,00 Bk€ 4.712,50 VRIk€ 7.992,50 YJHk€ 9.422,50 Kk€ 5.587,50 Calibration unitk€ 2.620,00k€ 1.320,00 SW (ICS+DRS)k€ 100,00 Adds onk€ 3.100,00 Totalk€ ,00k€ ,00 Contingency (20%)k€ 7.449,00k€ 4.309,00 Gran totalk€ ,00k€ ,00 Full Optical Coudè will require 7-8 M€ in addition

Roma – 15 Giugno 2015 Technical Readiness Level RequirementComplianceTRLHeritage Spectral ResolutionC9 Harps, Espresso, X- Shooter, Crires Wavelength rangeC 7 (there are a lot of examples of reduced wavelength the modular concept preserves the high level of TRL) Harps, Espresso, X- Shooter, Crires, Giano Spatial ResolutionC7?? Entrance ApertureC 9 for the 2 point sources 7 for the 10 sources Harps, Espresso K-mos Wavelength precision and Accuracy C 7 for the Visible 6 for the Infrared Espresso Carmenes StabilityC9Crires,Carmenes Sky subtractionC9Harps PolarimetryC6Pepsi OtherC6Harps Espresso

Roma – 15 Giugno 2015 Conclusion I: feasibility An Instrument able to provide High resolution spectroscopy (100000) in a wide wavelength range (0.37 to 2.5 um) IS FEASIBLE with the current available technology. It is anyway possible to foreseen dedicated R&D to maximize performances and or reduce the cost. –Larger Detector (mainly IR side) –Larger Pixel size –Curved Detector –Grating Ruling processes –Laser Frequency Comb –Stabilized Fabry-Perot –Fibers throughput

Roma – 15 Giugno 2015 Conclusion II: time adaptability Hires modularity will guarantee TO FULLFILL ALL THE TLR REQUIREMENT in the best way. On the other hand will also allow different timeline for the different spectrographs and add-on pending on the available money. It is possible to consider an early delivery of one or two arms, with a lighter front end; the other arms and full capabilities (polarimetric, MR and HR 2 modes) can be added later.

Roma – 15 Giugno 2015 Conclusion III: layout adaptability Hires modularity will also allow DIFFERENT CONFIGURATIONS on the telescope, namely different location of the modules on the platform (Nasmith and Coudè) within the boundary defined by the fibers throughput. This means for example that the location of the different modules may also adapt with the development of the telescope. The telescope I/F are evolving, so it is necessary to be involved in the discussion at least as auditor.

Roma – 15 Giugno 2015 Conclusion IV: telescope pupil Beeing Hires a fiber fed instrument its main performances will NOT BE INFLUENCED by reduced telescope M1 without inner rings (except for the observation depth).

Roma – 15 Giugno 2015 Conclusion V: AO dependance In addition for the science cases that needs Single targets where there are no background sources that could contaminate the observation, at short wavelength observations, observations of extended sources, the AO will not increase significantly the performances. This means that Hires is able to provide the required performances even without it.

Roma – 15 Giugno 2015 Conclusion VI: Mass issue Critical point can be found in the Overall Mass of the Instrument which could be between 30 and 40 Ton. Despite of that the modularity of the System will help allowing a distribution of the masses that can be optimized to minimize the impact on the platforms.

Roma – 15 Giugno 2015 Conclusion All this conclusions drive to the main good results that Hires can be modulated to provide reasonable fraction of the required science with almost ANY early 1 st light of ANY ELT.

Roma – 15 Giugno 2015 Grazie!

Roma – 15 Giugno 2015 Ub echellogram

Roma – 15 Giugno 2015 VRI echellogram Figure 72 Updated VRI echellograms

Roma – 15 Giugno 2015 YJH echellogram Figure 72 Updated VRI echellograms

Roma – 15 Giugno 2015 Instrument Layout

Roma – 15 Giugno 2015