CHE-300Review nomenclature syntheses reactions mechanisms.

Slides:



Advertisements
Similar presentations
Chapter 10. Alkyl Halides. What Is an Alkyl Halide An organic compound containing at least one carbon-halogen bond (C-X) –X (F, Cl, Br, I) replaces H.
Advertisements

ALKENE AND ALKYNE REACTIONS Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , , , , 8.10, 8.12, , 7.1,
1 Reactions of Alkenes: Addition Reactions Disparlure: sex attractant of the female gypsy moth. (A type of pheromone.)
Chapter 81 CHE-240 Unit 3 Physical and Chemical Properties and Reactions of Alkenes and Alkynes CHAPTER EIGHT TERRENCE P. SHERLOCK BURLINGTON COUNTY COLLEGE.
Organic Chemistry II CHEM 271. Chapter One Alcohols, Diols and Thiols.
Organic Chemistry, 6th Edition L. G. Wade, Jr.
Alkynes  Nomenclature  Physical Properties  Synthesis  Reactions.
Physical and Chemical Properties and Reactions of Alkenes and Alkynes CHAPTER NINE TERRENCE P. SHERLOCK BURLINGTON COUNTY COLLEGE 2004 CHE-240 Unit 3.
EthersR-O-R or R-O-R´ Nomenclature: simple ethers are named: “alkyl alkyl ether” “dialkyl ether” if symmetric CH 3 CH 3 CH 3 CH 2 -O-CH 2 CH 3 CH 3 CH-O-CHCH.
Alkyl Halides R-X (X = F, Cl, Br, I)
Alkanes.
Alkenes C n H 2n “unsaturated” hydrocarbons C 2 H 4 ethylene Functional group = carbon-carbon double bond sp 2 hybridization => flat, 120 o bond angles.
Reactions of Alkenes. Some Reaction Types : Addition Elimination Substitution.
Alkynes.
Alkenes, Reactions. NR      some NR        Acids Bases Metals Oxidation Reduction Halogens R-H R-X R-OH R-O-R Alkenes.
Alkynes. C n H 2n-2 C 2 H 2 H:C:::C:H H—C  C—H sp => linear, 180 o acetylene ethyne C 3 H 4 CH 3 C  CH methylacetylene propyne.
Chapter 8 Reactions of Alkenes
Reactions of aldehydes and ketones:
AlcoholsR-O-H Classification CH 3, 1 o, 2 o, 3 o Nomenclature: Common names: “alkyl alcohol” IUPAC: parent = longest continuous carbon chain containing.
Organic Chemistry for Hydrocarbon
CHE-300 Review nomenclature syntheses reactions mechanisms.
Introduction Alkynes contain a triple bond. General formula is CnH2n-2
ALKENE AND ALKYNE REACTIONS and SYNTHESIS Dr. Sheppard CHEM 2412 Summer 2015 Klein (2 nd ed.) sections 11.7, 9.1, 9.3, 11.10, , 9.8, 9.7, 14.8,
Chapter 8 Reactions of Alkenes Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2003,  Prentice Hall Organic Chemistry,
127 Chapter 6: Reactions of Alkenes: Addition Reactions 6.1: Hydrogenation of Alkenes – addition of H-H (H 2 ) to the π-bond of alkenes to afford an alkane.
Reactions of aldehydes and ketones : oxidation reduction nucleophilic addition 1)Aldehydes are easily oxidized, ketones are not. 2)Aldehydes are more reactive.
Chapter 9 Alkynes Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1.
Chapter 8 Copyright © 2010 Pearson Education, Inc. Organic Chemistry, 7 th Edition L. G. Wade, Jr. Reactions of Alkenes.
ALKENE AND ALKYNE REACTIONS, CONTINUED Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , , , , 8.10, 8.12,

Chapter 15 Alcohols, Diols, and Thiols Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
7. Alkenes: Reactions and Synthesis Based on McMurry’s Organic Chemistry, 6 th edition.
Alcohols R-O-H Classification CH3, 1o, 2o, 3o Nomenclature:
Alicyclics Aliphatic compounds containing rings, cycloalkanes, cycloalkyl halides, cycloalkyl alcohols, cyclic ethers, cycloalkenes, cycloalkadienes, etc.
IV. Oxidation Three types A. Epoxidation B. Hydroxylation C. Oxidative cleavage.
Alkenes, Reactions. NR      some NR        Acids Bases Metals Oxidation Reduction Halogens R-H R-X R-OH R-O-R Alkenes.
Reactivity of C=C Electrons in pi bond are loosely held.
Chapter 11 Alcohols and Ethers
Chapter 4-1. Alkenes: Reactions and Synthesis
Unsaturated Hydrocarbons II: Alkynes
Alkene Simple alkenes are named much like alkanes, using the root name of the longest chain containing the double bond. The ending is changed from -ane.
CHAPTER 4 ALKYL HALIDE BY MAHWASH HAFEEZ. Alkyl Halides Alkyl halides have the general formula R-X R is alkyl group (functional group) and X is the halogen.
Chapter 15 Alcohols, Diols, and Thiols Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ORGANIC CHEMISTRY AND UNIT PROCESS ENROLLMENT NO.NAME PATEL NISHIT PATEL RAHUL PATEL SAGAR PATEL VASHISHTHA.
CHAPTER 4: ALKYNES.
10. Alkyl Halides. 2 What Is an Alkyl Halide An organic compound containing at least one carbon- halogen bond (C-X) X (F, Cl, Br, I) replaces H Can contain.
Physical and Chemical Properties and Reactions of Alkenes and Alkynes.
Chapter 8 Alkenes and Alkynes II: Addition Reactions
SYNTHESIS OF ALKENES VIA ELIMINATION REACTIONS
PHCM 331 – Organic and Medicinal/Pharmaceutical Chemistry I
Chapter 3 ALKENES Dr. Yasser Mostafa Abdallah
Alkenes, Reactions.
Alkenes CnH2n “unsaturated” hydrocarbons

Alcohols, Phenols &Thiols
Chapter 9 Alkynes: An Introduction to Organic Synthesis
Chapter 13: Alkynes: The C C Triple Bond
Alkynes Dr Seemal Jelani Chem-160 9/16/2018.
Reactions Of Alkenes EQ: Why is addition a characteristic (most important) reaction of Alkenes?
Alkynes Alkynes contain a triple bond. General formula is C H
Alcohols R-O-H Classification CH3, 1o, 2o, 3o Nomenclature:
Alkanes.
Unsaturated Hydrocarbons II: Dienes and Alkynes
Unsaturated Hydrocarbons II: Dienes and Alkynes
Chapter 11 Alcohols and Ethers
Unsaturated Hydrocarbons II: Alkynes
Alcohols R-O-H Classification CH3, 1o, 2o, 3o Nomenclature:
Alkynes. CnH2n-2 C2H2 H:C:::C:H H—C  C—H sp => linear, 180o
Alkynes. CnH2n-2 C2H2 H:C:::C:H H—C  C—H sp => linear, 180o
Presentation transcript:

CHE-300Review nomenclature syntheses reactions mechanisms

Alkanes Alkyl halides Alcohols Ethers Alkenes conjugated dienes Alkynes Alicyclics Epoxides

Alkanes Nomenclature Syntheses 1. reduction of alkene (addition of hydrogen) 2. reduction of an alkyl halide a) hydrolysis of a Grignard reagent b) with an active metal and acid 3. Corey-House Synthesis Reactions 1. halogenation 2. combustion (oxidation) 3. pyrolysis (cracking)

Alkanes, nomenclature CH 3 CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 CH 3 CHCH 2 CH 2 CH 3 (n-hexane) (isohexane) n-hexane2-methylpentane CH 3 CH 3 CH 3 CH 2 CHCH 2 CH 3 CH 3 CCH 2 CH 3 (no common name) CH 3 3-methylpentane (neohexane) 2,2-dimethylbutane CH 3 CH 3 CHCHCH 3 CH 3 (no common name) 2,3-dimethylbutane

Alkanes, syntheses 1. Addition of hydrogen (reduction). | | | | — C = C — + H 2 + Ni, Pt, or Pd  — C — C — | | H H Requires catalyst. CH 3 CH=CHCH 3 + H 2, Ni  CH 3 CH 2 CH 2 CH 3 2-butene n-butane

2.Reduction of an alkyl halide a) hydrolysis of a Grignard reagent (two steps) i) R—X + Mg  RMgX (Grignard reagent) ii) RMgX + H 2 O  RH + Mg(OH)X SB SA WA WB CH 3 CH 2 CH 2 -Br + Mg  CH 3 CH 2 CH 2 -MgBr n-propyl bromiden-propyl magnesium bromide CH 3 CH 2 CH 2 -MgBr + H 2 O  CH 3 CH 2 CH 3 + Mg(OH)Br propane

b)with an active metal and an acid R—X + metal/acid  RH active metals = Sn, Zn, Fe, etc. acid = HCl, etc. (H + ) CH 3 CH 2 CHCH 3 + Sn/HCl  CH 3 CH 2 CH 2 CH 3 + SnCl 2 Cl sec-butyl chloriden-butane CH 3 CH 3 CH 3 CCH 3 + Zn/H +  CH 3 CHCH 3 + ZnBr 2 Br tert-butyl bromideisobutane

3. Corey-House Synthesis CH 3 CH 3 CH 3 CH 3 CH-Br + Li  CH 3 CH-Li + CuI  (CH 3 CH) 2 -CuLi isopropyl bromide CH 3 CH 3 (CH 3 CH) 2 -CuLi + CH 3 CH 2 CH 2 -Br  CH 3 CH-CH 2 CH 2 CH 3 2-methylpentane (isohexane) mechanism = S N 2 Note: the R´X should be a 1 o or methyl halide for the best yields of the final product.

Alkanes, reactions 1. Halogenation R-H + X 2, heat or hv  R-X + HX a) heat or light required for reaction. b) X 2 : Cl 2 > Br 2  I 2 c) yields mixtures  d) H: 3 o > 2 o > 1 o > CH 4 e) bromine is more selective f) free radical substitution

CH 3 CH 2 CH 2 CH 3 + Br 2, hv  CH 3 CH 2 CH 2 CH 2 -Br 2% n-butanen-butyl bromide + CH 3 CH 2 CHCH 3 98% Br sec-butyl bromide CH 3 CH 3 CH 3 CHCH 3 + Br 2, hv  CH 3 CHCH 2 -Br <1% isobutane isobutyl bromide + CH 3 CH 3 CCH 3 99% Br tert-butyl bromide

Alkyl halides nomenclature syntheses 1. from alcohols a) HX b) PX 3 2. halogenation of certain alkanes 3. addition of hydrogen halides to alkenes 4. addition of halogens to alkenes 5. halide exchange for iodide reactions 1. nucleophilic substitution 2. dehydrohalogenation 3. formation of Grignard reagent 4. reduction

Alkyl halides, nomenclature CH 3 CH 3 CH 3 CHCH 2 CHCH 3 CH 3 CCH 3 Br I 2-bromo-4-methylpentanetert-butyl iodide 2-iodo-2-methylpropane 2 o 3 o CH 3 Cl-CHCH 2 CH 3 sec-butyl chloride 2-chlorobutane 2 o

Alkyl halides, syntheses 1. From alcohols a)With HX R-OH + HX  R-X + H 2 O i) HX = HCl, HBr, HI ii) may be acid catalyzed (H + ) iii) ROH: 3 o > 2 o > CH 3 > 1 o (3 o /2 o – S N 1; CH 3 /1 o – S N 2) iv) rearrangements are possible except with most 1 o ROH

CH 3 CH 2 CH 2 CH 2 -OH + NaBr, H 2 SO 4, heat  CH 3 CH 2 CH 2 CH 2 -Br n-butyl alcohol (HBr)n-butyl bromide 1-butanol1-bromobutane CH 3 CH 3 CH 3 CCH 3 + HCl  CH 3 CCH 3 OH Cl tert-butyl alcoholtert-butyl chloride 2-methyl-2-propanol2-chloro-2-methylpropane CH 3 -OH + HI, H +,heat  CH 3 -I methyl alcohol methyl iodide methanol iodomethane

…from alcohols: b) PX 3 i) PX 3 = PCl 3, PBr 3, P + I 2 ii) ROH: CH 3 > 1 o > 2 o iii) no rearragements CH 3 CH 2 -OH + P, I 2  CH 3 CH 2 -I ethyl alcohol ethyl iodide ethanol iodoethane CH 3 CH 3 CH 3 CHCH 2 -OH + PBr 3  CH 3 CHCH 2 -Br isobutyl alcohol isobutyl bromide 2-methyl-1-propanol 1-bromo-2-methylpropane

2.Halogenation of certain hydrocarbons. R-H + X 2, Δ or hν  R-X + HX (requires Δ or hν; Cl 2 > Br 2 (I 2 NR); 3 o >2 o >1 o )  yields mixtures!  In syntheses, limited to those hydrocarbons that yield only one monohalogenated product. CH 3 CH 3 CH 3 CCH 3 + Cl 2, heat  CH 3 CCH 2 -Cl CH 3 CH 3 neopentane neopentyl chloride 2,2-dimethylpropane 1-chloro-2,2-dimethylpropane

5.Halide exchange for iodide. R-X + NaI, acetone  R-I + NaX  i) R-X = R-Cl or R-Br ii) NaI is soluble in acetone, NaCl/NaBr are insoluble. CH 3 CH 2 CH 2 -Br + NaI, acetone  CH 3 CH 2 CH 2 -I n-propyl bromide n-propyl idodide 1-bromopropane 1-idodopropane iii) S N 2 R-X should be 1 o or CH 3

Reactions of alkyl halides: 1.Nucleophilic substitution  Best with 1 o or CH 3 !!!!!! R-X + :Z -  R-Z + :X - 2.Dehydrohalogenation R-X + KOH(alc)  alkene(s) 3.Preparation of Grignard Reagent R-X + Mg  RMgX 4.Reduction R-X + Mg  RMgX + H 2 O  R-H R-X + Sn, HCl  R-H

1. Nucleophilic substitution R-X + :OH -  ROH + :X - alcohol R-X + H 2 O  ROH + HX alcohol R-X + :OR´ -  R-O-R´ + :X - ether R-X + - :C  CR´  R-C  CR´ + :X - alkyne R-X + :I -  R-I + :X - iodide R-X + :CN -  R-C  N + :X - nitrile R-X + :NH 3  R-NH 2 + HXprimary amine R-X + :NH 2 R´  R-NHR´ + HXsecondary amine R-X + :SH -  R-SH + :X - thiol R-X + :SR´  R-SR´ + :X - thioether Etc. Best when R-X is CH 3 or 1 o ! S N 2

2. dehydrohalogenation of alkyl halides | | | | — C — C — + KOH(alc.)  — C = C — + KX + H 2 O | | H X a)RX: 3 o > 2 o > 1 o b)no rearragement c)may yield mixtures  d)Saytzeff orientation e)element effect f)isotope effect g)rate = k [RX] [KOH] h)Mechanism = E2

CH 3 CHCH 3 + KOH(alc)  CH 3 CH=CH 2 Br isopropyl bromidepropylene CH 3 CH 2 CH 2 CH 2 -Br + KOH(alc)  CH 3 CH 2 CH=CH 2 n-butyl bromide 1-butene CH 3 CH 2 CHCH 3 + KOH(alc)  CH 3 CH 2 CH=CH 2 Br 1-butene 19% sec-butyl bromide + CH 3 CH=CHCH 3 2-butene 81%

3. preparation of Grignard reagent CH 3 CH 2 CH 2 -Br + Mg  CH 3 CH 2 CH 2 -MgBr n-propyl bromiden-propyl magnesium bromide 4.reduction CH 3 CH 2 CH 2 -Br + Mg  CH 3 CH 2 CH 2 -MgBr CH 3 CH 2 CH 2 -MgBr + H 2 O  CH 3 CH 2 CH 3 + Mg(OH)Br propane CH 3 CH 2 CHCH 3 + Sn/HCl  CH 3 CH 2 CH 2 CH 3 + SnCl 2 Cl sec-butyl chloriden-butane

Alcohols nomenclature syntheses 1. oxymercuration-demercuration 2. hydroboration-oxidation hydrolysis of some alkyl halides reactions 1. HX 2. PX 3 3. dehydration 4. as acids 5. ester formation 6. oxidation

Alcohols, nomenclature CH 3 CH 3 CH 3 CHCH 2 CHCH 3 CH 3 CCH 3 OH OH 4-methyl-2-pentanoltert-butyl alcohol 2-methyl-2-propanol 2 o 3 o CH 3 HO-CHCH 2 CH 3 CH 3 CH 2 CH 2 -OH sec-butyl alcoholn-propyl alcohol 2-butanol 1-propanol 2 o 1 o

Alcohols, syntheses 1. oxymercuration-demercuration: a)Markovnikov orientation. b)100% yields. c)no rearrangements CH 3 CH 2 CH=CH 2 + H 2 O, Hg(OAc) 2 ; then NaBH 4  CH 3 CH 2 CHCH 3 OH

2. hydroboration-oxidation: Anti-Markovnikov orientation.  100% yields. no rearrangements CH 3 CH 2 CH=CH 2 + (BH 3 ) 2 ; then H 2 O 2, NaOH  CH 3 CH 2 CH 2 CH 2 -OH

Reaction of alcohols 1. with HX: R-OH + HX  R-X + H 2 O a) HX: HI > HBr > HCl b) ROH: 3 o > 2 o > CH 3 > 1 o S N 1/S N 2 c) May be acid catalyzed d) Rearrangements are possible except with most 1 o alcohols.

CH 3 CH 2 CH 2 CH 2 -OH + NaBr, H 2 SO 4, heat  CH 3 CH 2 CH 2 CH 2 -Br n-butyl alcohol (HBr)n-butyl bromide 1-butanol1-bromobutane CH 3 CH 3 CH 3 CCH 3 + HCl  CH 3 CCH 3 OH Cl tert-butyl alcoholtert-butyl chloride 2-methyl-2-propanol2-chloro-2-methylpropane CH 3 -OH + HI, H +,heat  CH 3 -I methyl alcohol methyl iodide methanol iodomethane

2.With PX 3 ROH + PX 3  RX a)PX 3 = PCl 3, PBr 3, P + I 2 b)No rearrangements c)ROH: CH 3 > 1 o > 2 o CH 3 CH 3 CH 3 CCH 2 -OH + PBr 3  CH 3 CCH 2 -Br CH 3 CH 3 neopentyl alcohol 2,2-dimethyl-1-bromopropane

3.Dehydration of alcohols | | | | — C — C — acid, heat  — C = C — + H 2 O | | H OH a)ROH: 3 o > 2 o > 1 o b)acid is a catalyst c)rearrangements are possible  d)mixtures are possible  e)Saytzeff f)mechanism is E1

CH 3 CH 2 -OH + 95% H 2 SO 4, 170 o C  CH 2 =CH 2 CH 3 CH 3 CH 3 CCH % H 2 SO 4, o C  CH 3 C=CH 2 OH CH 3 CH 2 CHCH % H 2 SO 4, 100 o C  CH 3 CH=CHCH 3 OH + CH 3 CH 2 CH=CH 2 CH 3 CH 2 CH 2 CH 2 -OH + H +, 140 o C  CH 3 CH 2 CH=CH 2 rearrangement!  + CH 3 CH=CHCH 3

4)As acids. a)With active metals: ROH + Na  RONa + ½ H 2  CH 3 CH 2 -OH + K  CH 3 CH 2 -O - K + + H 2 b)With bases: CH 4 < NH 3 < ROH < H 2 O < HF ROH + NaOH  NR! CH 3 CH 2 OH + CH 3 MgBr  CH 4 + Mg(Oet)Br

5.Ester formation. CH 3 CH 2 -OH + CH 3 CO 2 H, H +  CH 3 CO 2 CH 2 CH 3 + H 2 O CH 3 CH 2 -OH + CH 3 COCl  CH 3 CO 2 CH 2 CH 3 + HCl CH 3 -OH + CH 3 SO 2 Cl  CH 3 SO 3 CH 3 + HCl Esters are alkyl “salts” of acids.

6.Oxidation Oxidizing agents: KMnO 4, K 2 Cr 2 O 7, CrO 3, NaOCl, etc. Primary alcohols: CH 3 CH 2 CH 2 -OH + KMnO 4, etc.  CH 3 CH 2 CO 2 H carboxylic acid Secondary alcohols: OH O CH 3 CH 2 CHCH 3 + K 2 Cr 2 O 7, etc.  CH 3 CH 2 CCH 3 ketone Teriary alcohols: no reaction.

Primary alcohols can also be oxidized to aldehydes: CH 3 CH 2 CH 2 -OH + C 5 H 5 NHCrO 3 Cl  CH 3 CH 2 CHO pyridinium chlorochromate aldehyde or CH 3 CH 2 CH 2 -OH + K 2 Cr 2 O 7, special conditions 

Ethers nomenclature syntheses 1. Williamson Synthesis 2. alkoxymercuration-demercuration reactions 1. acid cleavage

EthersR-O-R or R-O-R´ Nomenclature: simple ethers are named: “alkyl alkyl ether” “dialkyl ether” if symmetric CH 3 CH 3 CH 3 CH 2 -O-CH 2 CH 3 CH 3 CH-O-CHCH 3 diethyl ether diisopropyl ether

R-OH + Na  R-O - Na +  R-O-R´ R´-OH + HX  R´-X (CH 3 ) 2 CH-OH + Na  (CH 3 ) 2 CH-O - Na + +  CH 3 CH 2 CH 2 -O-CH(CH 3 ) 2 CH 3 CH 2 CH 2 -OH + HBr  CH 3 CH 2 CH 2 -Br isopropyl n-propyl ether note: the alkyl halide is primary! 1. Williamson Synthesis of Ethers

CH 3 CH 2 CH 2 -OH + Na  CH 3 CH 2 CH 2 -ONa +  CH 3 CH 2 CH 2 -O-CH(CH 3 ) 2 (CH 3 ) 2 CH-OH + HBr  (CH 3 ) 2 CH-Br 2 o The product of this attempted Williamson Synthesis using a secondary alkyl halide results not in the desired ether but in an alkene! The alkyl halide in a Williamson Synthesis must beCH 3 or 1 o ! 

2. alkoxymercuration-demercuration: a)Markovnikov orientation. b)100% yields. c)no rearrangements CH 3 CH=CH 2 + CH 3 CHCH 3, Hg(TFA) 2 ; then NaBH 4  OH CH 3 CH 3 CH 3 CH-O-CHCH 3 diisopropyl ether Avoids the elimination with 2 o /3 o RX in Williamson Synthesis.

Reactions, ethers: 1.Acid cleavage. R-O-R´ + (conc) HX, heat  R-X + R´-X CH 3 CH 2 -O-CH 2 CH 3 + HBr, heat  2 CH 3 CH 2 -Br

Alkenes nomenclature syntheses 1. dehydrohalogenation of an alkyl halide 2. dehydration of an alcohol 3. dehalogenation of a vicinal dihalide 4. reduction of an alkyne reactions 1. addition of hydrogen10. hydroboration-oxidation 2. addition of halogens11. addition of free radicals 3. addition of hydrogen halides12. polymerization 4. addition of sulfuric acid13. addition of carbenes 5. addition of water14. epoxidation 6. halohydrin formation15. hydroxylation 7. dimerization16. allylic halogenation 8. alkylation17. ozonolysis 9. oxymercuration-demercuration18. vigorous oxidation

Alkenes, nomenclature C 3 H 6 propylene CH 3 CH=CH 2 C 4 H 8 butylenesCH 3 CH 2 CH=CH 2 α-butylene 1-butene CH 3 CH 3 CH=CHCH 3 CH 3 C=CH 2 β-butylene isobutylene 2-butene2-methylpropene

* ** * (Z)-3-methyl-2-pentene ( 3-methyl-cis-2-pentene ) (E)-1-bromo-1-chloropropene

1. dehydrohalogenation of alkyl halides | | | | — C — C — + KOH(alc.)  — C = C — + KX + H 2 O | | H X a)RX: 3 o > 2 o > 1 o b)no rearragement c)may yield mixtures  d)Saytzeff orientation e)element effect f)isotope effect g)rate = k [RX] [KOH] h)Mechanism = E2

CH 3 CHCH 3 + KOH(alc)  CH 3 CH=CH 2 Br isopropyl bromidepropylene CH 3 CH 2 CH 2 CH 2 -Br + KOH(alc)  CH 3 CH 2 CH=CH 2 n-butyl bromide 1-butene CH 3 CH 2 CHCH 3 + KOH(alc)  CH 3 CH 2 CH=CH 2 Br 1-butene 19% sec-butyl bromide + CH 3 CH=CHCH 3 2-butene 81%

2.dehydration of alcohols: | | | | — C — C — acid, heat  — C = C — + H 2 O | | H OH a)ROH: 3 o > 2 o > 1 o b)acid is a catalyst c)rearrangements are possible  d)mixtures are possible  e)Saytzeff f)mechanism is E1

CH 3 CH 2 -OH + 95% H 2 SO 4, 170 o C  CH 2 =CH 2 CH 3 CH 3 CH 3 CCH % H 2 SO 4, o C  CH 3 C=CH 2 OH CH 3 CH 2 CHCH % H 2 SO 4, 100 o C  CH 3 CH=CHCH 3 OH + CH 3 CH 2 CH=CH 2 CH 3 CH 2 CH 2 CH 2 -OH + H +, 140 o C  CH 3 CH 2 CH=CH 2 rearrangement!  + CH 3 CH=CHCH 3

3.dehalogenation of vicinal dihalides | | | | — C — C — + Zn  — C = C — + ZnX 2 | | X X eg. CH 3 CH 2 CHCH 2 + Zn  CH 3 CH 2 CH=CH 2 + ZnBr 2 Br Br Not generally useful as vicinal dihalides are usually made from alkenes. May be used to “protect” a carbon-carbon double bond.

CH 3 H \ / Na or Li C = C anti- NH 3 (liq) / \ H CH 3 trans-2-butene CH 3 C  CCH 3 H H \ / H 2, Pd-C C = C syn- Lindlar catalyst / \ CH 3 CH 3 cis-2-butene 4. reduction of alkyne

Alkenes, reactions 1. Addition of hydrogen (reduction). | | | | — C = C — + H 2 + Ni, Pt, or Pd  — C — C — | | H H a) Requires catalyst. b)#1 synthesis of alkanes CH 3 CH=CHCH 3 + H 2, Ni  CH 3 CH 2 CH 2 CH 3 2-butene n-butane

2) Addition of halogens. | | | | — C = C — + X 2  — C — C — | | X X a)X 2 = Br 2 or Cl 2 b)test for unsaturation with Br 2 CH 3 CH 2 CH=CH 2 + Br 2 /CCl 4  CH 3 CH 2 CHCH 2 Br Br 1-butene 1,2-dibromobutane

3.Addition of hydrogen halides. | | | | — C = C — + HX  — C — C — | | H X a)HX = HI, HBr, HCl b)Markovnikov orientation CH 3 CH=CH 2 + HI  CH 3 CHCH 3 I CH 3 CH 3 CH 2 C=CH 2 + HBr  CH 3 CCH 3 Br

4.Addition of sulfuric acid. | | | | — C = C — + H 2 SO 4  — C — C — | | H OSO 3 H alkyl hydrogen sulfate Markovnikov orientation. CH 3 CH=CH 2 + H 2 SO 4  CH 3 CHCH 3 O O-S-O OH

5.Addition of water. | | | | — C = C — + H 2 O, H +  — C — C — | | H OH a) requires acid b)Markovnikov orientation c)low yield  CH 3 CH 2 CH=CH 2 + H 2 O, H +  CH 3 CH 2 CHCH 3 OH

6.Addition of halogens + water (halohydrin formation): | | | | — C = C — + X 2, H 2 O  — C — C — + HX | | OH X a)X 2 = Br 2, Cl 2 b)Br 2 = electrophile CH 3 CH=CH 2 + Br 2 (aq.)  CH 3 CHCH 2 + HBr OH Br

7.Dimerization: CH 3 CH 3 CH 3 CH 3 C=CH 2 + H 2 SO 4, 80 o C  CH 3 C-CH=CCH 3 CH 3 + CH 3 CH 3 CH 3 C-CH 2 C=CH 2 CH 3

8.Alkylation: CH 3 CH 3 CH 3 C=CH 2 + CH 3 CHCH 3 + HF, 0 o C  CH 3 CH 3 CH 3 C-CH 2 CHCH 3 CH 3 2,2,4-trimethylpentane ( “isooctane” )

9. oxymercuration-demercuration: a) Markovnikov orientation. b) 100% yields. c) no rearrangements CH 3 CH 2 CH=CH 2 + H 2 O, Hg(OAc) 2 ; then NaBH 4  CH 3 CH 2 CHCH 3 OH

With alcohol instead of water: alkoxymercuration-demercuration: | | | | — C =C — + ROH, Hg(TFA) 2  — C — C — | | OR HgTFA | | | | — C — C — + NaBH 4  — C — C — | | | | OR HgTFA OR H ether

10. hydroboration-oxidation: a)#2 synthesis of alcohols. b)Anti-Markovnikov orientation.  c)100% yields. d)no rearrangements CH 3 CH 2 CH=CH 2 + (BH 3 ) 2 ; then H 2 O 2, NaOH  CH 3 CH 2 CH 2 CH 2 -OH

11.Addition of free radicals. | | | | — C = C — + HBr, peroxides  — C — C — | | H X a)anti-Markovnikov orientation. b)free radical addition CH 3 CH=CH 2 + HBr, peroxides  CH 3 CH 2 CH 2 -Br

12.Polymerization. CH 2 =CH 2 + heat, pressure  -(CH 2 CH 2 )- n n = 10,000+ polyethylene CH 3 CH=CH 2 polymerization  -(CH 2 CH)- n CH 3 polypropylene CH 2 =CHCl poly…  -(CH 2 CH)- n Cl polyvinyl chloride (PVC)

13.Addition of carbenes. | | | | — C = C — + CH 2 CO or CH 2 N 2, hν  — C — C —  CH 2 CH 2 “carbene” adds across the double bond | | — C = C —  CH 2

14. Epoxidation. | | C 6 H 5 CO 3 H | | — C = C — + (peroxybenzoic acid)  — C— C — O epoxide Free radical addition of oxygen diradical. | | — C = C —  O

15. Hydroxylation. (mild oxidation) | | | | — C = C — + KMnO 4  — C — C — syn | | OH OH OH | | | | — C = C — + HCO 3 H  — C — C — anti peroxyformic acid | | OH glycol

cis-2-butene + KMnO 2  meso-2,3-dihydroxybutane mp 34 o CH 3 H OH CH 3 trans-2-butene + KMnO 4  (S,S) & (R,R)-2,3-dihydroxybutane mp 19 o CH 3 H OH + HO H HO H H OH CH 3 CH 3 stereoselective and stereospecific

16.Allylic halogenation. | | | | | | — C = C — C — + X 2, heat  — C = C — C — + HX | | H  allyl X CH 2 =CHCH 3 + Br 2, 350 o C  CH 2 =CHCH 2 Br + HBr a) X 2 = Cl 2 or Br 2 b) or N-bromosuccinimide (NBS)

17.Ozonolysis. | | | | — C = C — + O 3 ; then Zn, H 2 O  — C = O + O = C — used for identification of alkenes CH 3 CH 3 CH 2 CH=CCH 3 + O 3 ; then Zn, H 2 O  CH 3 CH 3 CH 2 CH=O + O=CCH 3

18.Vigorous oxidation. =CH 2 + KMnO 4, heat  CO 2 =CHR + KMnO 4, heat  RCOOH carboxylic acid =CR 2 + KMnO 4, heat  O=CR 2 ketone

CH 3 CH 2 CH 2 CH=CH 2 + KMnO 4, heat  CH 3 CH 2 CH 2 COOH + CO 2 CH 3 CH 3 CH 3 C=CHCH 3 + KMnO 4, heat  CH 3 C=O + HOOCCH 3

Dienes nomenclature syntheses same as alkenes reactions same as alkenes special: conjugated dienes 1. more stable 2. preferred products of eliminations 3. give 1,2- & 1,4- addition products

(cumulated dienes are not very stable and are rare) isolated dienes are as you would predict, undergo addition reactions with one or two moles…  conjugated dienes are unusual in that they: 1)are more stable than predicted 2)are the preferred products of eliminations 3)give 1,2- plus 1,4-addition products

nomenclature: CH 2 =CHCH=CH 2 CH 3 CH=CHCH 2 CH=CHCH 3 1,3-butadiene 2,5-heptadiene conjugated isolated 2-methyl-1,3-butadiene (isoprene) conjugated

isolated dienes: (as expected) 1,5-hexadiene CH 2 =CHCH 2 CH 2 CH=CH 2 + H 2, Ni  CH 3 CH 2 CH 2 CH 2 CH=CH 2 CH 2 =CHCH 2 CH 2 CH=CH H 2, Ni  CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 CH 2 =CHCH 2 CH 2 CH=CH 2 + Br 2  CH 2 CHCH 2 CH 2 CH=CH 2 Br Br CH 2 =CHCH 2 CH 2 CH=CH 2 + HBr  CH 3 CHCH 2 CH 2 CH=CH 2 Br CH 2 =CHCH 2 CH 2 CH=CH HBr  CH 3 CHCH 2 CH 2 CHCH 3 Br Br

conjugated dienes yield 1,2- plus 1,4-addition: CH 2 =CHCH=CH 2 + H 2, Ni  CH 3 CH 2 CH=CH 2 + CH 3 CH=CHCH 3 CH 2 =CHCH=CH H 2, Ni  CH 3 CH 2 CH 2 CH 3 CH 2 =CHCH=CH 2 + Br 2  CH 2 CHCH=CH 2 + CH 2 CH=CHCH 2 Br Br Br Br CH 2 =CHCH=CH 2 + HBr  CH 3 CHCH=CH 2 + CH 3 CH=CHCH 2 Br Br peroxides CH 2 =CHCH=CH 2 + HBr  CH 2 CH=CHCH 3 + CH 2 CH 2 CH=CH 2 Br Br

Alkynes nomenclature syntheses 1. dehydrohalogenation of vicinal dihalides 2. coupling of metal acetylides with alkyl halides reactions 1. reduction 2. addition of halogens 3. addition of hydrogen halides 4. addition of water 5. as acids 6. with Ag + 7. oxidation

Alkynes, nomenclature HC  CH ethyne acetylene CH 3 CH 3 CH 2 C  CHHC  CCHCH 2 CH 3 1-butyne 3-methyl-1-pentyne ethylacetylenesec-butylacetylene

Synthesis, alkynes: 1.dehydrohalogenation of vicinal dihalides H H H | | | — C — C — + KOH  — C = C — + KX + H 2 O | | | X X X H | — C = C — + NaNH 2  — C  C — + NaX + NH 3 | X

2.coupling of metal acetylides with 1 o /CH 3 alkyl halides R-C  C - Na + + R´X  R-C  C-R´ + NaX a)S N 2 b)R´X must be 1 o or CH 3 X CH 3 C  C - Li + + CH 3 CH 2 -Br  CH 3 C  CCH 2 CH 3

HC  CH + 2 H 2, Pt  CH 3 CH 3 [ HC  CH + one mole H 2, Pt  CH 3 CH 3 + CH 2 =CH 2 + HC  CH ] H \ / Na or Li C = C anti- NH 3 (liq) / \ H — C  C — \ / H 2, Pd-C C = C syn- Lindlar catalyst / \ H H Alkyne, reactions 1. Addition of hydrogen (reduction)

CH 3 H \ / Na or Li C = C anti- NH 3 (liq) / \ H CH 3 trans-2-butene CH 3 C  CCH 3 H H \ / H 2, Pd-C C = C syn- Lindlar catalyst / \ CH 3 CH 3 cis-2-butene

2.Addition of X 2 X X X | | | — C  C— + X 2  — C = C — + X 2  — C — C — | | | X X X Br Br Br CH 3 C  CH + Br 2  CH 3 C=CH + Br 2  CH 3 -C-CH Br Br Br

3.Addition of hydrogen halides: H H X | | | — C  C— + HX  — C = C — + HX  — C — C — | | | X H X a)HX = HI, HBr, HCl b)Markovnikov orientation Cl CH 3 C  CH + HCl  CH 3 C=CH 2 + HCl  CH 3 CCH 3 Cl Cl

4.Addition of water. Hydration. O — C  C — + H 2 O, H +, HgO  — CH2 — C— H OH — C = C — “enol” keto-enol tautomerism Markovnikov orientation.

CH 3 CH 2 C  CH + H 2 O, H 2 SO 4, HgO  1-butyne O CH 3 CH 2 CCH 3 2-butanone

5.As acids. terminal alkynes only! a)with active metals CH 3 C  CH + Na  CH 3 C  C - Na + + ½ H 2  b)with bases CH 4 < NH 3 < HC  CH < ROH < H 2 O < HF CH 3 C  CH + CH 3 MgBr  CH 4 + CH 3 C  CMgBr SA SB WA WB

6.Ag + terminal alkynes only! CH 3 CH 2 C  CH + AgNO 3  CH 3 CH 2 C  C - Ag +  CH 3 C  CCH 3 + AgNO 3  NR (not terminal) formation of a precipitate is a test for terminal alkynes.

CH 3 CH 2 C  CCH 3 + KMnO 4  CH 3 C  CH + hot KMnO 4  CH 3 C  CCH 3 + O 3 ; then Zn, H 2 O  CH 3 CH 2 COOH + HOOCCH 3 CH 3 COOH + CO 2 2 CH 3 COOH 7. Oxidation

Alicyclics nomenclature syntheses like alkanes, alkenes, alcohols, etc. reactions as expected exceptions: cyclopropane/cyclobutane

methylcyclopentane 1,1-dimethylcyclobutane trans-1,2-dibromocyclohexane

cyclopentene 3-methylcyclohexene1,3-cyclobutadiene

Cycloalkanes, syntheses A. Modification of a cyclic compound: H 2, Ni Sn, HCl Mg; then H 2 O

Cycloalkanes, reactions: 1.halogenation 2. combustion 3. cracking 4. exceptions Cl 2, heat + HCl

exceptions: H 2, Ni, 80 o CH 3 CH 2 CH 3 Cl 2, FeCl 3 Cl-CH 2 CH 2 CH 2 -Cl H 2 O, H + CH 3 CH 2 CH 2 -OH conc. H 2 SO 4 CH 3 CH 2 CH 2 -OSO 3 H HI CH 3 CH 2 CH 2 -I

exceptions (cont.) +H 2, Ni, 200 o  CH 3 CH 2 CH 2 CH 3

KOH(alc) H +, Δ Zn cyclohexene Cycloalkenes, syntheses

Cycloalkenes, reactions: 1.addition of H hydroboration-oxid. 2.addition of X addition of free radicals 3.addition of HX12. polymerization 4.addition of H 2 SO addition of carbenes 5.addition of H 2 O,H epoxidation 6.addition of X 2 + H 2 O15. hydroxylation 7.dimerization16. allylic halogenation 8.alkylation17. ozonolysis 9.oxymerc-demerc.18. vigorous oxidation

H 2, Pt Br 2, CCl 4 HBr H 2 SO 4 H 2 O, H + Br 2 (aq.) dimerization trans-1,2-dibromocyclohexane Markovnikov

HF H 2 O,Hg(OAc) 2 NaBH 4 (BH 3 ) 2 H 2 O 2, NaOH HBr, perox. polymer. CH 2 CO,hv PBA Markovnikov anti-Markovnikov anti-Markovinikov

KMnO 4 HCO 3 H Br 2, heat O 3 Zn, H 2 O KMnO 4, heat O=CHCH 2 CH 2 CH 2 CH 2 CH=O HO 2 CCH 2 CH 2 CH 2 CH 2 CO 2 H cis-1,2-cylohexanediol trans-1,2-cyclohexanediol

Epoxides nomenclature syntheses 1. epoxidation of alkenes reactions 1. addition of acids 2. addition of bases

Epoxides, nomenclature ethylene oxide propylene oxide cyclopentene oxide (oxirane) (methyloxirane) C 6 H 5 CO 3 H Synthesis: β-butylene oxidecis-2-butene

epoxides, reactions: 1)acid catalyzed addition H 2 O, H + CH 3 CH 2 OH, H + HBr OH CH 2 OH OH CH 3 CH 2 -O-CH 2 CH 2 OH CH 2 Br

OH CH 2 OH CH 3 CH 2 -O-CH 2 CH 2 -OH H 2 N-CH 2 CH 2 -OH CH 3 CH 2 CH 2 CH 2 -OH 2. Base catalyzed addition

Mechanisms: Free radical substitution S N 2 S N 1 E2 E1 ionic electrophilic addition free radical electrophilic addition Memorize (all steps, curved arrow formalism, RDS) and know which reactions go by these mechanisms!

Free Radical Substitution Mechanism initiating step: 1)X—X  2 X propagating steps: 2) X + R—H  H—X + R 3)R + X—X  R—X + X 2), 3), 2), 3)… terminating steps: 4) 2 X  X—X 5) R + X  R—X 6) 2 R  R—R

Substitution, nucleophilic, bimolecular (S N 2) CH 3 > 1 o > 2 o > 3 o

Substitution, nucleophilic, unimolecular (S N 1) 3 o > 2 o > 1 o > CH 3 1) 2)

Mechanism = elimination, bimolecular E2 3 o > 2 o > 1 o

Elimination, unimolecular E1 3 o > 2 o > 1 o

Free radical electrophilic addition of HBr: Initiating steps: 1) peroxide  2 radical 2) radical + HBr  radical:H + Br (Br electrophile) Propagating steps: 3) Br + CH 3 CH=CH 2  CH 3 CHCH 2 -Br (2 o free radical) 4) CH 3 CHCH 2 -Br + HBr  CH 3 CH 2 CH 2 -Br + Br 3), 4), 3), 4)… Terminating steps: 5)Br + Br  Br 2 Etc.