22 th Winter Workshop on Nuclear Dynamics La Jolla, 2006 1 New Clues on Fission Dynamics from Systems of Intermediate Fissility E.V., A. Brondi, G. La.

Slides:



Advertisements
Similar presentations
M3.1 JYFL fission model Department of Physics, University of Jyväskylä, FIN-40351, Finland V.G. Khlopin Radium Institute, , St. Petersburg, Russia.
Advertisements

Monte Carlo Simulation of Prompt Neutron Emission During Acceleration in Fission T. Ohsawa Kinki University Japanese Nuclear Data Committee IAEA/CRP on.
W. Udo Schröder, 2007 Spontaneous Fission 1. W. Udo Schröder, 2007 Spontaneous Fission 2 Liquid-Drop Oscillations Bohr&Mottelson II, Ch. 6 Surface & Coulomb.
The Dynamical Deformation in Heavy Ion Collisions Junqing Li Institute of Modern Physics, CAS School of Nuclear Science and Technology, Lanzhou University.
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
Isospin Dependence of Intermediate Mass Fragments in 124Sn, 124Xe + 124Sn, 112Sn D. V. Shetty, A. Keksis, E. Martin, A. Ruangma, G.A. Souliotis, M. Veselsky,
Fusion-Fission Dynamics for Super-Heavy Elements Bülent Yılmaz 1,2 and David Boilley 1,3 Fission of Atomic Nuclei Super-Heavy Elements (SHE) Measurement.
The role of isospin in Fusion-Evaporation reactions Antonio Di Nitto INFN Sezione di Napoli, Italy Outline Level density dependence on isospin Statistical.
Collective nuclear motion at finite temperature investigated with fission reactions induced by 238 U at 1 A GeV on deuterium Jorge Pereira Conca Universidad.
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
NECK FRAGMENTATION IN FISSION AND QUASIFISSION OF HEAVY AND SUPERHEAVY NUCLEI V.A. Rubchenya Department of Physics, University of Jyväskylä, Finland.
1 Role of the nuclear shell structure and orientation angles of deformed reactants in complete fusion Joint Institute for Nuclear Research Flerov Laboratory.
Giovanni La Rana, EURISOL Workshop, Trento, January 16-20, 2006 A. Brondi, G. La Rana, R. Moro, M. Trotta, E. Vardaci Università di Napoli Federico II,
Fission fragment properties at scission:
INTRODUCTION SPALLATION REACTIONS F/B ASYMMETRY FOR Au+p RANKING OF SPALLATION MODELS SUMMARY Title 24/09/2014 Sushil K. Sharma Proton induced spallation.
 What are the appropriate degrees of freedom for describing fission of heavy nuclei (171 ≤ A ≤ 330)?  Fission barrier heights for 5239 nuclides between.
Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN ARIS2014 Tokyo Mass Asymmetric Fission of Iridium Nucleus Mass.
CEA Bruyères-le-ChâtelESNT 2007 Fission fragment properties at scission: An analysis with the Gogny force J.F. Berger J.P. Delaroche N. Dubray CEA Bruyères-le-Châtel.
Futoshi Minato JAEA Nuclear Data Center, Tokai Theoretical calculations of beta-delayed neutrons and sensitivity analyses 1.
The study of fission dynamics in fusion-fission reactions within a stochastic approach Theoretical model for description of fission process Results of.
J.B. Natowitz. Correlations – Cluster Formation Bose Condensates Efimov States Superfluidity Perfect Liquid? Perfect Gas ? Few Body Syst.Suppl. 14 (2003)
Beatriz Jurado, Karl-Heinz Schmidt CENBG, Bordeaux, France Supported by EFNUDAT, ERINDA and NEA The GEneral Fission code (GEF) Motivation: Accurate and.
Fusion excitation function revisited Ph.Eudes 1, Z. Basrak 2, V. de la Mota 1, G.Royer 1, F. Sébille 1 and M. Zoric 1,2 1 Subatech, EMN-IN2P3/CNRS-Universite.
Fission and Dissipation Studies via Peripheral Heavy Ion Collisions at Relativistic Energy Ch. SCHMITT, IPNLyon  Innovative Reaction Mechanism  Relevant.
Laura Francalanza Collaborazione EXOCHIM INFN Sezione di Catania - LNS.
Interactions of Neutrons
Investigation of GeV proton-induced spallation reactions
W. Udo Schröder, 2007 Spontaneous Fission 1. W. Udo Schröder, 2007 Spontaneous Fission Liquid-Drop Oscillations Bohr&Mottelson II, Ch. 6 Surface & Coulomb.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Fusion-Fissions and Quasi-fissions of 32,34 S- and 48 Ti-induced Fissions at Near-barrier Energies H. Q. Zhang China Institute of Atomic Energy 中国原子能科学研究院.
Isotope dependence of the superheavy nucleus formation cross section LIU Zu-hua( 刘祖华) (China Institute of Atomic Energy)
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
A new statistical scission-point model fed with microscopic ingredients Sophie Heinrich CEA/DAM-Dif/DPTA/Service de Physique Nucléaire CEA/DAM-Dif/DPTA/Service.
Dynamics effect and evolution of isoscaling on the Quantum Molecular Dynamics model Wendong TIAN, Yugang MA, Xiangzhou CAI, Jingen CHEN, Jinhui CHEN, Deqing.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Recent improvements in the GSI fission model
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
Isospin study of projectile fragmentation Content 1 、 Isospin effect and EOS in asymmetry nuclei 2 、 Isotope Yields in projectile ragmentation 3 、 Summary.
激发能相关的能级密度参数和重核衰变性质 叶 巍 (东南大学物理系 南京 ). 内容 ◆ 问题背景 ◆ 理论模型 ◆ 计算结果和结论.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
Fission Collective Dynamics in a Microscopic Framework Kazimierz Sept 2005 H. Goutte, J.F. Berger, D. Gogny CEA Bruyères-le-Châtel Fission dynamics with.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Mid-peripheral collisions : PLF* decay Statistical behavior  isotropy  v H > v L  v L > v H P T TLF * PLF * 1 fragment v L > v H forward v H > v L backward.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel WPCF 2013 Acireale, Italy 7-Nov-2013 Clustering and Low Density.
EVIDENCE FOR TRANSIENT EFFECTS IN FISSION AND IMPORTANCE FOR NUCLIDE PRODUCTION B. Jurado 1,2, K.-H. Schmidt 1, A. Kelić 1, C. Schmitt 1, J. Benlliure.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Knyazheva G.N. Flerov Laboratory of Nuclear Reactions Asymmetric quasifission in reactions with heavy ions TAN 11, Sochi, Russia.
Dynamical Model of Surrogate Reaction Y. Aritomo, S. Chiba, and K. Nishio Japan Atomic Energy Agency, Tokai, Japan 1. Introduction Surrogate reactions.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
2 nd SPES Workshop Probing the Island of Stability with SPES beams.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
Y. K. Gupta Nuclear Physics Division, BARC, Mumbai Understanding of Diverse Nuclear Phenomena using charged particle emission as a probe.
Dynamical effects in fission reactions investigated at high excitation energy José Benlliure Universidad of Santiago de Compostela Spain.
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Ternary Fission and Neck Fragmentation
Microscopic studies of the fission process
Department of Physics, University of Jyväskylä, Finland
Jiansong Wang for NIMROD Collaboration
Pioneering work on neck fragmentation:
Sensitivity of reaction dynamics by analysis of kinetic energy spectra of emitted light particles and formation of evaporation residue nuclei.
K. Hagel IWNDT 2013 College Station, Texas 20-Aug-2013
Effect of Friction on Neutron Emission in Fission of Heavy nuclei
Is nuclear viscosity dependent on temperature ?
NEW SIGNATURES ON DISSIPATION FROM THE STUDY OF
The fission rate in multi-dimensional Langevin calculations
Presentation transcript:

22 th Winter Workshop on Nuclear Dynamics La Jolla, New Clues on Fission Dynamics from Systems of Intermediate Fissility E.V., A. Brondi, G. La Rana, R. Moro, M.Trotta, A. Ordine, A. Boiano Istituto Nazionale di Fisica Nucleare and Dipartimento di Scienze Fisiche dell’Università di Napoli, I Napoli, Italy M. Cinausero, E. Fioretto, G. Prete, V. Rizzi, D. Shetty Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro I Legnaro (Padova), Italy M. Barbui, D. Fabris, M. Lunardon, S. Moretto, G. Viesti Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica dell’Università di Padova, I Padova, Italy F. Lucarelli, N. Gelli Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica dell’Università di Firenze, I Firenze, Italy P.N. Nadtochy Department of Theoretical Physics, Omsk State University, Omsk,Russia V.A. Rubchenya Department of Physycs, University of Jyvaskyla, Finland

22 th Winter Workshop on Nuclear Dynamics La Jolla, Fusion-Fission Light particles and  emission can provide a moving picture of the time evolution Multiplicity is a sensible observable for time scales

22 th Winter Workshop on Nuclear Dynamics La Jolla, Fission Dynamics in Systems of Intermediate Fissility Prologue: FISSION TIME SCALE Excess of pre-scission n, p,  with respect to statistical model predictions Dynamical effect: path from equilibrium to scission slowed- down by the nuclear viscosity 0  d  ssc time Equilibrium Saddle-Point Scission-Point

22 th Winter Workshop on Nuclear Dynamics La Jolla, O Au Excitation Energy (MeV) a f /a n Neutron Multiplicity Statistical Model  = (35 ± 15) x s D. J. Hinde et al.  pp nn ff Statistical Model   d  f =  BW D. J. Hinde et al.,PRC45 (1992)

22 th Winter Workshop on Nuclear Dynamics La Jolla, Inclusion of  d (step function)  <  d   f = 0  >  d  f =  BW - Fission Barriers from A. J. Sierk Phys. Rev. C33 (1986) - a n from Toke and Swiatecki, Nucl. Phys. A372 (1981) Calculations performed for different values of a f / a and  d : 0.94 < a f / a < <  d < 40 x s  -Different sets of transmission coefficients: default, OM, IWBCM - Inclusion of  d (step function)  <  d   f = 0  >  d  f =  BW - Fission Barriers from A. J. Sierk Phys. Rev. C33 (1986) - a n from Toke and Swiatecki, Nucl. Phys. A372 (1981) Calculations performed for different values of a f / a and  d : 0.94 < a f / a < <  d < 40 x s  -Different sets of transmission coefficients: default, OM, IWBCM Multiplicity Analysis with SM

22 th Winter Workshop on Nuclear Dynamics La Jolla, Modified Statistical Model Fission as a diffusion process (Kramer Prescription) : 1.the presence of nuclear viscosity reduces the fission rate  BW 2.the full BW fission rate is never attained.   nuclear viscosity parameter  1 overdamped   reduced dissipation coefficient  f  transient buildup time of the flux over the barrier

22 th Winter Workshop on Nuclear Dynamics La Jolla, Time Scales n  f = (35 ± 15) x s D. J. Hinde et al.  f = (120 ± 10) x s L. M. Pant et al. n, p,  d = 10 x s  ssc = 50 x s J. P. Lestone et al. p,  d  0 H. Ikezoe et al. GDR  d = x s Shaw et al., Thoennessen et al. Dynamical fission time scale :  f =  d +  ssc The determination of the fission time scale and of the average deformation relies on Statistical Model calculations. Use as many observables as possible to constraint the relevant model parameters GOAL: To reproduce many observables with one set of input parameters

22 th Winter Workshop on Nuclear Dynamics La Jolla, Collective Transport Models 1.Lagrange equation (deterministic) 2.Transport equations (stochastic): Fokker-Planck and Langevin equations Dissipation from TKE, n multiplicity Dynamics of fission consists in the study of the gradual change of the shape of a fissioning nucleus. The shape is characterized in terms of collective variables (i.e. elongation parameter, the neck radius, mass asymmetry of exit fragments). The internal degrees of freedom (not collective) constitute the surrounding “heat bath”. The time evolution of these collective variables (interaction the “heat bath” ) describes the fission dynamics.

22 th Winter Workshop on Nuclear Dynamics La Jolla, …but.. NucleusE* (MeV)    s   Exp. Observ. ref. 200 Pb M n (pre) P f L + K 178 W – 251 Es neck 30 sci Mn(pre) P f L + K 181,185,187 Ir M n (pre) FP 181,185,187 Ir16422 M n (pre) WF 158 Er M n (pre) KG + SM 158 Er M n (pre) SML 224 Th6420 ± 6 M GDR KG + SM 175 Ta12320 M GDR KG + SM 90 Sr TKEKG + SM 141 Eu9020 M n (pre), M p (pre) M  (pre) M n (ER), M p (ER) M  (ER)  fiss KG + SM L+K: Langevin and Kramer; FP: Fokker-Plank; KG: Kramers-Grangé; SM: Statistical Model; WF: wall formula.

22 th Winter Workshop on Nuclear Dynamics La Jolla, From the theoretical point of view the predictions vary almost by two or three orders of magnitude. Most of the theories predict indeed an overdamped motion (  > 2x10 21 s -1 ) …but..

22 th Winter Workshop on Nuclear Dynamics La Jolla, The role of isospin in the dissipation W. Ye, Eur. Phys. J. A18 (2003) 571 N/Z N/Z

22 th Winter Workshop on Nuclear Dynamics La Jolla, Open Questions in Fission Dynamics 1.Fission time scale; 2.Strength and Nature of dissipation: one-body or two-body; 3.Dependence of the viscosity on the temperature and on the shape. 1.Fission time scale; 2.Strength and Nature of dissipation: one-body or two-body; 3.Dependence of the viscosity on the temperature and on the shape.

22 th Winter Workshop on Nuclear Dynamics La Jolla, More constraint on the model’s parameters (  ER, lp multiplicities in ER channel)  ~0.60  >0.60 Systems of Intermediate Fissility  ) sscpre   deformation effects on lcp emission  no much data on these systems  deformation effects on lcp emission  no much data on these systems

22 th Winter Workshop on Nuclear Dynamics La Jolla, Target 8  LP layout 34.0° 116 Si- CsI Telescopes (E-DE & TOF) 126 Si- CsI Telescopes (E-DE & PSD) 4 PPACs ring G 4.7° 60cm 15cm FF ring A

22 th Winter Workshop on Nuclear Dynamics La Jolla, The 8  LP setup MAX ENERGY Wall: up to 64 AMeV Ball : up to 34 AMeV TRIGGERS Fission Fragments in ring E/F/G Evaporation Residues (4 PPAC- PPAC) CORSET (under construction) ENERGY THRESHOLDS 0.5 AMeV for p and  2-3 AMeV for 12 C

22 th Winter Workshop on Nuclear Dynamics La Jolla, What observables ?  particle – FF coincidences  particle – ER coincidences  particle – FF coincidences  particle – ER coincidences 8  LP + Trigger for ER and FF

22 th Winter Workshop on Nuclear Dynamics La Jolla, Systems Studied G. La Rana et al., EPJ A16 (2003) 199 E. Vardaci et al., Phys.Atomic Nuclei 66, (2003) 1182, Nucl.Phys. A734 (2004) 241 dd Fast Fission R. Lacey et al., Phys. Rev. C37 (1988) 2540 W. Parker et al., Nucl. Phys. A568 (1994) 633 SystemCNEx (MeV)  d ( s) 32 S Ag 141 Eu O Sm 168 Yb93? 32 S Mo 132 Ce122? 121 Sb + 27 Al 149 Gd Ar + nat Ag 147,9 Tb Ar + nat Ag 147,9 Tb S Mo 132 Ce1520

22 th Winter Workshop on Nuclear Dynamics La Jolla, MeV 32 S Mo  132 Ce: Fragment-Fragment Correlations Ring F-GRing G-G E1 E2 E1

22 th Winter Workshop on Nuclear Dynamics La Jolla, Fragment-Fragment-Particle Coincidences Particle Energy Spectra can arise from several sources: in order to extract the pre- and post-scission integrated multiplicity it is necessary to unfold the contribution of these sources. Three main sources: -Composite System prior to scission - The two fission fragments The Statistical code GANES is used to unfold the spectra and extract the multiplicities.

22 th Winter Workshop on Nuclear Dynamics La Jolla, In-Plane Multiplicity Spectra 12 in-plane correlation angles CS F1 F2 43 o 78 o 102 o 120 o 137 o 156 o 204 o 223 o 241 o 258 o 282 o 299 o E lab (MeV) d 2 M/d   dE  (ster -1 MeV -1 )  =78°  =102°  =120°  =43°  =156°  =204°  =223°  =137°  =258°  =241°  =282°  =299° 200 MeV 32 S Mo  132 Ce

22 th Winter Workshop on Nuclear Dynamics La Jolla, ring G  = in-plane angle  out-of-plane angle d 2 M/d   dE   ster -1 MeV -1 ) E lab (MeV)  = 35.4°   = 24.9°   = 9.2°   = 335.1°   = 324.6°   = 318.9°   = 41.1°   = 350.8°  200 MeV 32 S Mo  132 Ce CS F1 F2 Out-Of-Plane Multiplicity Spectra

22 th Winter Workshop on Nuclear Dynamics La Jolla, ring E  = in-plane angle  out-of-plane angle E lab (MeV)  = 74.2°   = 66.6°   = 38.8°   = 293.4°   = 285.8°   = 77.0°   = 321.2°  d 2 M/d   dE  (ster -1 MeV -1 )  = 283.0°  200 MeV 32 S Mo  132 Ce CS F1 F2 Out-Of-Plane Multiplicity Spectra

22 th Winter Workshop on Nuclear Dynamics La Jolla, d 2 M/d   dE  (ster -1 MeV -1 ) E lab (MeV)  = 113.0°   = 140.8°   = 247.0°   = 254.5°   = 257.3°   = 102.7°   = 219.2°   = 105.5°  200 MeV 32 S Mo  132 Ce  = in-plane angle  out-of-plane angle ring D CS F1 F2 Out-Of-Plane Multiplicity Spectra

22 th Winter Workshop on Nuclear Dynamics La Jolla, M p ER M  ER M p pre M  pre  ff [mb]  ER [mb] 0,90 (0.14) 0,56 (0.09) 0,055 (0,007) 0,038 (0,005) 70 ± 7576 ± MeV 32 S Mo  132 Ce:

22 th Winter Workshop on Nuclear Dynamics La Jolla, Important to measure M n 200 MeV 32 S Mo  FF

22 th Winter Workshop on Nuclear Dynamics La Jolla, particle-ER coincidences 1.The SM code Lilita_N97 (no fission included) reproduces the angular distribution 2.It overestimates p and  multiplicities by the same factor It well reproduces the energy spectra shapes of p and  ABCDEFG Lilita_N97 exp alpha dM/d  (ster -1 ) ABCDEFG exp Lilita_N proton Detector #

22 th Winter Workshop on Nuclear Dynamics La Jolla, dM/d  (ster -1 ) ABCDEFG Detector # exp PACE exp PACE ABCDEFG Detector # proton alpha particle-ER coincidences: PACE (1) 1.The SM code PACE (fission included) reproduces the a.d. 2.It overestimates p (by 1.8) and  (by 3.1) multiplicities 3.No selection of input parameters improves the agreement 4.The energy spectra are generally too hard

22 th Winter Workshop on Nuclear Dynamics La Jolla, Q & A If the model does not work where it is supposed to work, why do we use it in another regime to estimate time scales ? With respect to what baseline number is the excess to be determined? What are the effects of this inability of the model to predict correctly the particle competition in the fission channel? In principle, if the charged particle multip. are overestimated, the neutron multiplicity should be underestimated......(?) Excitation Energy (MeV) Neutron Multiplicity Statistical Model a f /a n 16 O Au This means that the time delay may be overestimated if only neutrons are measured in the FF channel....

22 th Winter Workshop on Nuclear Dynamics La Jolla, MeV 18 O Sm  168 Yb n p  Newton et al.Nucl.Phys.A483 (1988)  d (x ) PreScission Multiplicity

22 th Winter Workshop on Nuclear Dynamics La Jolla, What do we do? By using a more realistic approach we can try to put this picture together! 3D Langevin approach + Statistical Model Karpov, Nadtochy et al. Phys.Rev. C63, 2001 LILITA_N97 for light particle evaporation along trajectories

22 th Winter Workshop on Nuclear Dynamics La Jolla, D Langevin Eq. (1) 1.The shape is characterized in terms of collective variables (i.e. elongation parameter, the neck radius, mass asymmetry of exit fragments). 2.The internal degrees of freedom (not collective) constitute the surrounding ‘heat bath’. 3.The heat bath induces fluctuations on the collective variables Langevin equations describe the time evolution of the collective variables like the evolution of Brownian particle that interact stochastically with a ‘heat bath’ (internal degrees of freedom). Dynamical approach of fission consists into the study of the gradual change of the shape of a fissioning nucleus.

22 th Winter Workshop on Nuclear Dynamics La Jolla, D Langevin Eq. (2) Inertia Tensor Friction Tensor q 1 = deformation q 2 = neck size q 3 = mass asymmetry

22 th Winter Workshop on Nuclear Dynamics La Jolla, E coll - the energy connected with collective degrees of freedom E int - the energy connected with internal degrees of freedom E evap - the energy carried away by the evaporated particles PES Time Evolution

22 th Winter Workshop on Nuclear Dynamics La Jolla, fission eventsEvaporation residue events - starting point (sphere) - saddle point For each fissioning trajectory it is possible to calculate masses (M 1 and M 2 ) and kinetic energies (E K ) of fission fragments, fission time (t f ), the number of evaporated light prescission particles. Samples of Trajectories scission line

22 th Winter Workshop on Nuclear Dynamics La Jolla, MeV 32 S Mo: Fission Rate t (x ) Fission Rate L = 60 L = 50 L = 40 L = 0-20

22 th Winter Workshop on Nuclear Dynamics La Jolla, ER channelPrescission channel MpMp MM MpMp MM  FF (mb)  ER (mb) Exp. 0,91 ± ,56 ± ,055 ± 0,007 0,038 ± 0, ± ± 50 Theor MeV 32 S Mo Transient time for fission, ranging from 15 to 20 x at high angular momentum of the composite system, where fission is relevant

22 th Winter Workshop on Nuclear Dynamics La Jolla, Conclusions The current implementations of the SM do not reproduce correctly particle competitions in the ER channel The extraction of the fission time scale is affected by the reliability of the SM ingredients used The SM is unable to reproduce a sizeable set of observable which involve the Fission and the ER channel Dynamical models seems to be a promising approach capable of reproducing a more complete set of data More tests and measurement need to be performed