Buck-derived full-bridge converter

Slides:



Advertisements
Similar presentations
POWER ELECTRONICS R & D LABORATORY DESIGN OF FORWARD CONVERTER WITH LCD SNUBBER Presented by Laszlo Huber November, 1999 Chungli, Taiwan.
Advertisements

Introduction to DC-DC Conversion – Cont.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 State plane trajectory of a parallel-loaded tank circuit.
Quasi-square-wave ZVS converters
Switched-Mode DC Power Supplies Five configurations –Flyback –Forward –Push-pull –Half Bridge –Full-Bridge Operate at high frequencies –Easy to filter.
Chapter 20 Quasi-Resonant Converters
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Active clamp circuits Can be viewed as a lossless voltage-clamp snubber.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures The conventional forward converter Max v ds = 2V g + ringing Limited.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters 20.2 Resonant switch topologies Basic ZCS switch cell: SPST switch SW : Voltage-bidirectional.
1 Parameters for various resonant switch networks.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Reduction of power converter size through increase of switching frequency Increasing.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Soft-switching converters with constant switching frequency With two.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures Zero-voltage transition converters The phase-shifted full bridge.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
1 Quasi-square-wave ZVS converters A quasi-square-wave ZVS buck Resonant transitions but transistor and diode conduction intervals are similar to PWM Tank.
Chapter 20 Quasi-Resonant Converters
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion 19.4 Load-dependent properties of resonant converters Resonant inverter design objectives:
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 General Solution for the Steady-State Characteristics of the Series.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion I plan on indicating for each lecture(s) of this year the equivalent lecture(s) from.
Soft-switching converters with constant switching frequency
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 36 Midterm Exam Averages: all students 78.1 on-campus students 78.3 off-campus.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Parallel resonant dc-dc converter
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Operation of the full bridge below resonance: Zero-current switching Series.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Chapter 19 Resonant Conversion Introduction 19.1Sinusoidal analysis of resonant converters.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Series resonant converter.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Operating Modes of the Series Resonant Converter Lecture 23 Resonant.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Steady state solution of state plane Two possible trajectories for given.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Upcoming Assignments Preparation for Lecture 2: Read Section 19.1, Sinusoidal analysis.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Power Electronics Chapter 5 DC to DC Converters (Choppers)
Power Electronics Chapter 8 Soft-Switching Techniques.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Announcements Correction to HW #2, Problem 19.3 solution Clarification.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Next Homework Assignment Problem 1 Conventional hard-switched flyback.
Chapter 20 Quasi-Resonant Converters
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures Active clamp forward converter.
Resonant and Soft-Switching Techniques in Power Electronics ECEN 5817
Waveforms of the half-wave ZCS quasi-resonant switch cell
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 26 Discontinuous conduction mode (DCVM) Occurs at heavy load and low output.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Time-Domain Analysis of Resonant and Soft-Switching Converters Principles.
Instrumentation & Power Electronics
POWER SUPPILES LECTURE 20.
1 Fly-back Converter fall Basic Topology of a Fly-back Converter.
Application of power electronics
WEEK 7 DC SWITCHING POWER SUPPLIES, PART II 1. EXPECTATIONS Describe the supply isolation characteristics afforded by transformers. Draw basic forward,
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
Chapter 6 Soft-Switching dc-dc Converters Outlines
A New Full-Protected Control Mode to Drive Piezoelectric Transformers in DC-DC Converters J.A.M. Ramos, M.A.J. Prieto, F.N. Garica, J.D. Gonzalez, F.M.F.
Lecture # 12&13 SWITCHING-MODE POWER SUPPLIES
Introduction to DC-DC Conversion – Cont.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion 19.3 Soft switching Soft switching can mitigate some of the mechanisms of switching.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Time-Domain Analysis of Resonant and Soft-Switching Converters Principles.
EET426 Power Electronics II
Prepared By: Talar Upendra ( ) Sodha Akram ( )
DC-DC PWM Converters Lecture Note 5.
Fault detection Lecture (3).
Converter principles and modelling
Buck-derived full-bridge converter
Diode Rectifiers Chapter 5.
Resonant and Soft-Switching Techniques in Power Electronics ECEN 5817
DC-DC Switch-Mode Converters
ECEN 5817 Housekeeping I plan on indicating for each lecture(s) of this year the equivalent lecture(s) from Spr. 06. This will make it easy if you choose.
Dr. Unnikrishnan P.C. Professor, EEE
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 2
Rectifiers. Introductions of rectifiers: IN PARTICLE ACCELERATORS, ELECTRONS OR OTHER CHARGED PARTICLES ARE FORCED TO MOVE ALONG ORBITS OR TRAJECTORIES.
Chapter 5 Isolated Switch-Mode dc-to-dc Converters
Presentation transcript:

Zero-voltage transition converters The phase-shifted full bridge converter Buck-derived full-bridge converter Zero-voltage switching of each half-bridge section Each half-bridge produces a square wave voltage. Phase-shifted control of converter output A popular converter for server front-end power systems Efficiencies of 90% to 95% regularly attained Controller chips available

Issues with this converter It’s a good converter for many applications requiring isolation. But… Secondary-side diodes operate with zero-current switching. They require snubbing or other protection to avoid failure associated with avalanche breakdown The resonant transitions reduce the effective duty cycle and conversion ratio. To compensate, the transformer turns ratio must be increased, leading to increased reflected load current in the primary-side elements During the D’Ts interval when both output diodes conduct, inductor Lc stores energy (needed for ZVS to initiate the next DTs interval) and its current circulates around the primary-side elements—causing conduction loss

Result of analysis Basic configuration: full bridge ZVT

Actual waveforms, including resonant transitions

Issues with this converter It’s a good converter for many applications requiring isolation. But… Secondary-side diodes operate with zero-current switching. They require snubbing or other protection to avoid failure associated with avalanche breakdown The resonant transitions reduce the effective duty cycle and conversion ratio. To compensate, the transformer turns ratio must be increased, leading to increased reflected load current in the primary-side elements During the D’Ts interval when both output diodes conduct, inductor Lc stores energy (needed for ZVS to initiate the next DTs interval) and its current circulates around the primary-side elements—causing conduction loss

Diode switching analysis

Diode commutation: intervals 3 and 4

Waveforms: ZCS of D6

Intervals 3, 3', and 4'

Simplification of circuit model during 4'

Simplification of circuit model during 4'

State plane diagram of ringing during 4'

Waveforms: ZCS of D6

Approaches to snub the diode ringing (a) conventional diode snubber

Approaches to snub the diode ringing (b) conventional passive voltage-clamp snubber

Approaches to snub the diode ringing (c) simplify to one passive voltage-clamp snubber

Approaches to snub the diode ringing (d) improvement of efficiency in voltage-clamp snubber

Approaches to snub the diode ringing (e) active clamp lossless snubber

Approaches to snub the diode ringing (f) primary-side lossless voltage clamp

Another application of the ZVT: DC Transformer Operate at a fixed conversion ratio with high duty cycle, leading to high efficiency—avoids the problems of circulating currents Use other elements in the system to regulate voltage 5 V 1 V PFC 350 V DC-DC Load ZVT AC line Load DC-DC isolation Load DC-DC

Active clamp circuits Can be viewed as a lossless voltage-clamp snubber that employs a current-bidirectional switch See Vinciarelli patent (1982) for use in forward converter Related to other half-bridge ZVS circuits Can be added to the transistor in any PWM converter Not only adds ZVS to forward converter, but also resets transformer better, leading to better transistor utilization than conventional reset circuit

The conventional forward converter Max vds = 2Vg + ringing Limited to D < 0.5 On-state transistor current is P/DVg Magnetizing current must operate in DCM Peak transistor voltage occurs during transformer reset Could reset the transformer with less voltage if interval 3 were reduced

The active-clamp forward converter Better transistor/transformer utilization ZVS Not limited to D < 0.5 Transistors are driven in usual half-bridge manner:

Approximate analysis: ignore resonant transitions, dead times, and resonant elements

Charge balance Vb can be viewed as a flyback converter output. By use of a current-bidirectional switch, there is no DCM, and LM operates in CCM.

Peak transistor voltage Max vds = Vg + Vb = Vg /D’ which is less than the conventional value of 2 Vg when D > 0.5 This can be used to considerable advantage in practical applications where there is a specified range of Vg

Design example 270 V ≤ Vg ≤ 350 V max Pload = P = 200 W Compare designs using conventional 1:1 reset winding and using active clamp circuit

Conventional case Peak vds = 2Vg + ringing = 700 V + ringing Let’s let max D = 0.5 (at Vg = 270 V), which is optimistic Then min D (at Vg = 350 V) is (0.5)(270)/(350) = 0.3857 The on-state transistor current, neglecting ripple, is given by  ig  = DnI = Did-on with P = 200 W = Vg  ig  = DVg id-on So id-on = P/DVg = (200W) / (0.5)(270 V) = 1.5 A

Active clamp case: scenario #1 Suppose we choose the same turns ratio as in the conventional design. Then the converter operates with the same range of duty cycles, and the on-state transistor current is the same. But the transistor voltage is equal to Vg / D’, and is reduced: At Vg = 270 V: D = 0.5 peak vds = 540 V At Vg = 350 V: D = 0.3857 peak vds = 570 V which is considerably less than 700 V

Active clamp case: scenario #2 Suppose we operate at a higher duty cycle, say, D = 0.5 at Vg = 350 V. Then the transistor voltage is equal to Vg / D’, and is similar to the conventional design under worst-case conditions: At Vg = 270 V: D = 0.648 peak vds = 767 V At Vg = 350 V: D = 0.5 peak vds = 700 V But we can use a lower turns ratio that leads to lower reflected current in Q1: id-on = P/DVg = (200W) / (0.5)(350 V) = 1.15 A