Image Sampling Moire patterns -

Slides:



Advertisements
Similar presentations
Multiscale Analysis of Images Gilad Lerman Math 5467 (stealing slides from Gonzalez & Woods, and Efros)
Advertisements

Image Interpolation CS4670: Computer Vision Noah Snavely.
Ted Adelson’s checkerboard illusion. Motion illusion, rotating snakes.
Slides from Alexei Efros
CS 691 Computational Photography
Computational Photography: Sampling + Reconstruction Connelly Barnes Slides from Alexei Efros and Steve Marschner.
Filtering CSE P 576 Larry Zitnick
Sampling, Aliasing, & Mipmaps
Image Filtering, Part 2: Resampling Today’s readings Forsyth & Ponce, chapters Forsyth & Ponce –
Convolution, Edge Detection, Sampling : Computational Photography Alexei Efros, CMU, Fall 2006 Some slides from Steve Seitz.
CSCE 641 Computer Graphics: Image Sampling and Reconstruction Jinxiang Chai.
Sampling and Pyramids : Rendering and Image Processing Alexei Efros …with lots of slides from Steve Seitz.
Edges and Scale Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski – From Sandlot ScienceSandlot.
Fourier Transform Analytic geometry gives a coordinate system for describing geometric objects. Fourier transform gives a coordinate system for functions.
Lecture 2: Edge detection and resampling
Image transformations, Part 2 Prof. Noah Snavely CS1114
CSCE 641 Computer Graphics: Image Sampling and Reconstruction Jinxiang Chai.
Image Sampling Moire patterns
Advanced Computer Graphics (Spring 2006) COMS 4162, Lecture 3: Sampling and Reconstruction Ravi Ramamoorthi
Lecture 3: Edge detection, continued
CSCE 641 Computer Graphics: Fourier Transform Jinxiang Chai.
Lecture 4: Image Resampling CS4670: Computer Vision Noah Snavely.
Lecture 3: Image Resampling CS4670: Computer Vision Noah Snavely Nearest-neighbor interpolation Input image 3x upsample hq3x interpolation (ZSNES)
CPSC 641 Computer Graphics: Fourier Transform Jinxiang Chai.
Fourier Theory and its Application to Vision
Advanced Computer Graphics (Spring 2005) COMS 4162, Lecture 3: Sampling and Reconstruction Ravi Ramamoorthi
Computational Photography: Fourier Transform Jinxiang Chai.
Slides from Alexei Efros, Steve Marschner Filters & fourier theory.
Fourier Analysis : Rendering and Image Processing Alexei Efros.
Image Pyramids and Blending
Image Sampling CSE 455 Ali Farhadi Many slides from Steve Seitz and Larry Zitnick.
Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 3 Ravi Ramamoorthi
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5409 T-R 10:30am – 11:50am.
Antialiasing CAP4730: Computational Structures in Computer Graphics.
Image Resampling CS4670: Computer Vision Noah Snavely.
Image Resampling CS4670: Computer Vision Noah Snavely.
Lecture 4: Image Resampling and Reconstruction CS4670: Computer Vision Kavita Bala.
Image Processing Edge detection Filtering: Noise suppresion.
Lecture 3: Edge detection CS4670/5670: Computer Vision Kavita Bala From Sandlot ScienceSandlot Science.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm.
CS559: Computer Graphics Lecture 4: Compositing and Resampling Li Zhang Spring 2008.
Lecture 5: Image Interpolation and Features
Brent M. Dingle, Ph.D Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Image Processing.
Lecture 5: Fourier and Pyramids
Projects Project 1a due this Friday Project 1b will go out on Friday to be done in pairs start looking for a partner now.
Last Lecture photomatix.com. Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image.
Recall: Gaussian smoothing/sampling G 1/4 G 1/8 Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction.
Antialiasing. What is alias? Alias - A false signal in telecommunication links from beats between signal frequency and sampling frequency (from dictionary.com)
Advanced Computer Graphics
Image Resampling & Interpolation
Many slides from Steve Seitz and Larry Zitnick
Image Sampling Moire patterns
Gonzalez & Woods, and Efros)
Image transformations
Fourier Transform Analytic geometry gives a coordinate system for describing geometric objects. Fourier transform gives a coordinate system for functions.
Fourier Transform Analytic geometry gives a coordinate system for describing geometric objects. Fourier transform gives a coordinate system for functions.
Image Sampling Moire patterns
Jeremy Bolton, PhD Assistant Teaching Professor
Multiscale Analysis of Images
More Image Manipulation
CSCE 643 Computer Vision: Image Sampling and Filtering
CSCE 643 Computer Vision: Thinking in Frequency
Samuel Cheng Slide credits: Noah Snavely
Image Processing Today’s readings For Monday
Filtering Part 2: Image Sampling
Image Sampling Moire patterns
Fourier Transform Analytic geometry gives a coordinate system for describing geometric objects. Fourier transform gives a coordinate system for functions.
Image Resampling & Interpolation
Resampling.
Samuel Cheng Slide credits: Noah Snavely
Presentation transcript:

Image Sampling Moire patterns -

Announcements Photoshop help sessions for project , Wednesday, Sieg 322

Image Scaling This image is too big to fit on the screen. How can we reduce it? How to generate a half- sized version?

Image sub-sampling Throw away every other row and column to create a 1/2 size image - called image sub-sampling 1/4 1/8

Image sub-sampling 1/4 (2x zoom) 1/8 (4x zoom) Why does this look so crufty? 1/2

Even worse for synthetic images

Sampling and the Nyquist rate Aliasing can arise when you sample a continuous signal or image occurs when your sampling rate is not high enough to capture the amount of detail in your image Can give you the wrong signal/image—an alias formally, the image contains structure at different scales –called “frequencies” in the Fourier domain the sampling rate must be high enough to capture the highest frequency in the image To avoid aliasing: sampling rate > 2 * max frequency in the image This minimum sampling rate is called the Nyquist rate

2D example Good sampling Bad sampling

Fourier transform

Sampling w Spatial domainFrequency domain 1/w sampling pattern sampled signal

Reconstruction Frequency domain 1/w w Spatial domain sinc function reconstructed signal

What happens when the sampling rate is too low?

Anti-aliasing by pre-filtering theoretical ideal pre-filter is a sinc function Gaussian, cubic filters work better in practice

Subsampling with Gaussian pre-filtering G 1/4 G 1/8 Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian pre-filtering G 1/4G 1/8Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction. Why? How can we speed this up?

Compare with... 1/4 (2x zoom) 1/8 (4x zoom) Why does this look so crufty? 1/2

Some times we want many resolutions Known as a Gaussian Pyramid [Burt and Adelson, 1983] In computer graphics, a mip map [Williams, 1983] A precursor to wavelet transform Gaussian Pyramids have all sorts of applications in computer vision We’ll talk about these later in the course

Gaussian pyramid construction filter mask Repeat Filter Subsample Until minimum resolution reached can specify desired number of levels (e.g., 3-level pyramid) The whole pyramid is only 4/3 the size of the original image!

Image resampling So far, we considered only power-of-two subsampling What about arbitrary scale reduction? How can we increase the size of the image? Recall how a digital image is formed It is a discrete point-sampling of a continuous function If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale d = 1 in this example

Image resampling So far, we considered only power-of-two subsampling What about arbitrary scale reduction? How can we increase the size of the image? Recall how a digital image is formed It is a discrete point-sampling of a continuous function If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale d = 1 in this example

Image resampling So what to do if we don’t know d = 1 in this example Answer: guess an approximation Can be done in a principled way: filtering Image reconstruction Convert to a continuous function Reconstruct by convolution:

Resampling filters What does the 2D version of this hat function look like? Better filters give better resampled images Bicubic is common choice –fit 3 rd degree polynomial surface to pixels in neighborhood –can also be implemented by a convolution performs linear interpolation (tent function) performs bilinear interpolation

Bilinear interpolation A simple method for resampling images

Moire patterns in real-world images. Here are comparison images by Dave Etchells of Imaging Resource using the Canon D60 (with an antialias filter) and the Sigma SD-9 (which has no antialias filter). The bands below the fur in the image at right are the kinds of artifacts that appear in images when no antialias filter is used. Sigma chose to eliminate the filter to get more sharpness, but the resulting apparent detail may or may not reflect features in the image.Imaging Resource