Marcus Bleicher, Santiago de Compostela 2006 Particle number fluctuations and correlation Marcus Bleicher Institut für Theoretische Physik Goethe Universität.

Slides:



Advertisements
Similar presentations
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Advertisements

Marcus Bleicher, ISMD 2005 Elliptic and Radial Flow in High Energetic Nuclear Collisions Marcus Bleicher (& Xianglei Zhu) Institut für Theoretische Physik.
Marcus Bleicher, Berkeley, Oct Elliptic Flow in High Energetic Nuclear Collisions Marcus Bleicher & Xianglei Zhu FIAS & Institut für Theoretische.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
Quark Matter 2006 ( ) Excitation functions of baryon anomaly and freeze-out properties at RHIC-PHENIX Tatsuya Chujo (University of Tsukuba) for.
Marcus Bleicher, ETD, Montreal 07/2007 Elliptic Flow and Fluctuations in Heavy Ion collisions Marcus Bleicher Institut für Theoretische Physik Goethe Universität.
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
First Results From a Hydro + Boltzmann Hybrid Approach DPG-Tagung, Darmstadt, , Hannah Petersen, Universität Frankfurt.
Marcus Bleicher, Frankfurt 2008 Are di-leptons sensitive messengers from the hot and dense stage? Marcus Bleicher Institut für Theoretische.
Marcus Bleicher, Florence 2006 Longitudinal Flow and Onset of Deconfinement Marcus Bleicher Institut für Theoretische Physik Goethe Universität Frankfurt.
A probe for hot & dense nuclear matter. Lake Louise Winter Institute 21 February, 2000 Manuel Calderón de la Barca Sánchez.
Marcus Bleicher, WPCF 08/2007 HBT results from UrQMD Marcus Bleicher & Qingfeng Li (FIAS) Institut für Theoretische Physik Goethe Universität Frankfurt.
Henrik Tydesjö May O UTLINE - The Quark Gluon Plasma - The Relativistic Heavy Ion Collider (RHIC) The PHENIX Experiment - QGP Signals Event-by-Event.
Forward-Backward Correlations in Heavy Ion Collisions Aaron Swindell, Morehouse College REU Cyclotron 2006, Texas A&M University Advisor: Dr. Che-Ming.
Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC Ingrid Kraus Nikhef and TU Darmstadt.
STAR STRANGENESS! K0sK0s    K+K+ (Preliminary)         
- How can Net-Charge Fluctuations be used as a signal of a Quark- Gluon Plasma (QGP) phase transition? - Definition of a simple fluctuation measure, some.
Elliptic Flow and Constituent Quark Scaling
Heavy Flavors at FAIR Elena Bratkovskaya , WE-Heraeus-Seminar „Characterization of the Quark Gluon Plasma with Heavy Quarks‘‘, Bad Honnef (Germany)
Marcus Bleicher, WWND 2008 A fully integrated (3+1) dimensional Hydro + Boltzmann Hybrid Approach Marcus Bleicher Institut für Theoretische Physik Goethe.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Resonance Dynamics in Heavy Ion Collisions 22nd Winter Workshop on Nuclear Dynamics , La Jolla, California Sascha Vogel, Marcus Bleicher UrQMD.
K/π and p/π Fluctuations 25 th Winter Workshop on Nuclear Dynamics February 2, 2009 Gary Westfall Michigan State University For the STAR Collaboration.
Helen Caines Yale University SQM – L.A.– March 2006 Using strange hadron yields as probes of dense matter. Outline Can we use thermal models to describe.
Workshop of European Research Group on Ultrarelativistic Heavy Ion Physics, Dubna-ITEP S.Kiselev 1 Direct photons. Generators aspects.  Sergey.
Baryon Strangeness correlatons : signals of a de-confined antecedent Abhijit Majumder Nuclear theory group, Lawrence Berkeley National Lab. In collaboration.
Marcus Bleicher, CCAST- Workshop 2004 Strangeness Dynamics and Transverse Pressure in HIC Marcus Bleicher Institut für Theoretische Physik Goethe Universität.
Revealing Baryon Number Fluctuations in Heavy Ion Collisions Masakiyo Kitazawa (Osaka U.) MK, M. Asakawa, arXiv: [nucl-th]
Jets at RHIC Jiangyong Jia
Convenors: Elena Bratkovskaya*, Christian Fuchs, Burkhard Kämpfer *FIAS, J.W. Goethe Universität, Frankfurt am Main , CBM Workshop „ The Physics.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model LongGang Pang 1, Victor Roy 1,, Guang-You Qin 1, & Xin-Nian.
Longitudinal de-correlation of anisotropic flow in Pb+Pb collisions Victor Roy ITP Goethe University Frankfurt In collaboration with L-G Pang, G-Y Qin,
Christof Roland / MITSQM 2004September 2004 Christof Roland / MIT For the NA49 Collaboration Strange Quark Matter 2004 Capetown, South Africa Event-by-Event.
STRING PERCOLATION AND THE GLASMA C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela CERN The first heavy ion collisions at the.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC Ingrid Kraus Nikhef and TU Darmstadt.
Study the particle ratio fluctuations in heavy- ion collisions Limin Fan ( 樊利敏 ) Central China Normal University (CCNU) 1.
LONG RANGE CORRELATIONS;EVENT SIMULATION AND PARTON PERCOLATION C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela,Spain BNL Glasma.
Marcus Bleicher, TBS Berkeley 2005 What have we learned from transport models? Marcus Bleicher Institut für Theoretische Physik Goethe Universität Frankfurt.
09/15/10Waye State University1 Elliptic Flow of Inclusive Photon Ahmed M. Hamed Midwest Critical Mass University of Toledo, Ohio October, 2005 Wayne.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions.
The importance of multiparticle collisions in heavy ion reactions C. Greiner The Physics of High Baryon Density IPHC Strasbourg, Sept Johann Wolfgang.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Parton-Hadron-String-Dynamics at NICA energies Elena Bratkovskaya Institut für Theoretische Physik, Uni. Frankfurt Round Table Discussion IV: Round Table.
Electromagnetic and strong probes of compressed baryonic matter at SIS100 energies Elena Bratkovskaya Institut für Theoretische Physik, Uni. Frankfurt.
Dynamical equilibration of strongly- interacting ‘infinite’ parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein,
1 June 24-29, Levoca, Slovakia Baryon-strangeness correlations in a partonic/hadron transport model F. Jin, Y. G. Ma, X. Z. Cai, G. L. Ma, H. Huang,
Results from an Integrated Boltzmann+Hydrodynamics Approach WPCF 2008, Krakau, Jan Steinheimer-Froschauer, Universität Frankfurt.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
QM2008 Jaipur, India Feb.4– Feb. 10, STAR's Measurement of Long-range Forward- backward Multiplicity Correlations as the Signature of “Dense Partonic.
Strange Probes of QCD Matter Huan Zhong Huang Department of Physics and Astronomy University of California Los Angeles, CA Oct 6-10, 2008; SQM2008.
Christina Markert Hot Quarks, Sardinia, Mai Christina Markert Kent State University Motivation Resonance in hadronic phase Time R AA and R dAu Elliptic.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Hadronic resonance production in Pb+Pb collisions from the ALICE experiment Anders Knospe on behalf of the ALICE Collaboration The University of Texas.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
Elliptic Flow of Inclusive Photon Elliptic Flow of Inclusive Photon Ahmed M. Hamed Midwest Critical Mass University of Toledo, Ohio Oct. 22,
24/6/2007 P.Ganoti, 1 Study of Λ(1520) production in pp TeV with the ALICE detector Paraskevi Ganoti University.
PACIAE model analysis of particle ratio fluctuations in heavy-ion collisions Limin Fan ( 樊利敏 ) Central China Normal University (CCNU) 1 第十五届全国核物理大会.
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
Strange hadrons and resonances at LHC energies with the ALICE detector INPC 2013 Firenze, Italy 2 -7 June 2013 A. Badalà (INFN Sezione di Catania) for.
Strangeness Production in Heavy-Ion Collisions at STAR
ALICE and the Little Bang
Charmed hadron signals of partonic medium
Charmonium dynamics in heavy ion collisions
Institute of Particle Physics Huazhong Normal University
Production of Multi-Strange Hyperons at FAIR Energies.
Fu Jinghua Institute of Particle Physics, Huazhong Normal University
Presentation transcript:

Marcus Bleicher, Santiago de Compostela 2006 Particle number fluctuations and correlation Marcus Bleicher Institut für Theoretische Physik Goethe Universität Frankfurt Germany

Marcus Bleicher, Santiago de Compostela 2006 Outline of the talk Introduction Ratio fluctuations - D - scaled variance Baryon-strangeness correlations Summary

Marcus Bleicher, Santiago de Compostela 2006 Motivation At RHIC: look for signals of freely moving partons. At FAIR/SPS: look for the mixed phase and the onset of deconfinement E. Bratkovskaya, M.B. et al., PRC 2005

Marcus Bleicher, Santiago de Compostela 2006 Energy density fluctuations Hot spots in the ‘thermal’ energy density ‘Clusters’ of size ~ 5 fm 3 M. Bleicher et al, Nucl.Phys.A638:391,1998 X (fm) y (fm)  (GeV/fm 3 ) Pb(160AGeV)+Pb  z=1fm

Marcus Bleicher, Santiago de Compostela 2006 The tool UrQMD : Ultra-Relativistic Quantum Molecular Dynamics out-of-equilibrium transport model Particles interact via : - measured and calculated cross sections - string excitation and fragmentation - formation and decay of resonances Provides full space-time dynamics of heavy-ion collisions

Marcus Bleicher, Santiago de Compostela 2006 What can transport models do? Provide baseline calculations, including resonances, jets, flow,… Study energy/centrality dependence Provide a look “behind the curtain”, i.e. what is the origin of the observed effect Study acceptance effects, i.e. how does limited detector coverage and the trigger conditions influence the results

Marcus Bleicher, Santiago de Compostela 2006

Sources of fluctuations I Centrality determination - same volume? - same energy deposition? - same particle density? Number of (initial) collisions - elastic vs inelastic Collision energy spectrum of the individual collisions

Marcus Bleicher, Santiago de Compostela 2006 Fluctuations/Correlations II String mass: P(m 2 )~1/m 2  Multiplicity fluctuations at fixed E cm Fluctuations of string tension (A. Bialas 2000)  strangeness and p T fluctuations Resonance decays Flow Jets

Marcus Bleicher, Santiago de Compostela 2006 Ratio fluctuations proposed by Jeon, Koch, Mueller, Asakawa… (2000) E.g.

Marcus Bleicher, Santiago de Compostela 2006 The ‘famous’ D: The first smoking gun prediction Bleicher, Jeon, Koch, PRC (2000)

Marcus Bleicher, Santiago de Compostela 2006 Similar results from other models Zhang, Topor Pop, Jeon, Gale, hep-ph/

Marcus Bleicher, Santiago de Compostela 2006 and why it doesn’t work Hadronization (quark recombination) destroys the fluctuation Finite acceptance might also destroy the signal (Zaranek et al.) qMD calculation by S. Scherrer

Marcus Bleicher, Santiago de Compostela 2006 Multiplicity fluctuations Extraction of the multiplicity distribution for every N par Note: Calculation is narrower than the data Pb+Pb (158 AGeV) in the NA49 acceptance (1.1<y CM <2.9)

Marcus Bleicher, Santiago de Compostela 2006 The fluctuation is quantified with the scaled variance : Enhanced fluctuations for mid- peripheral collisions are observed Multiplicity fluctuations at SPS: The problem    Similar results from HIJING, HSD and RQMD

Marcus Bleicher, Santiago de Compostela 2006 Multiplicity fluctuations at SPS: Not a problem? There seems not to be a problem in string cluster approaches.

Marcus Bleicher, Santiago de Compostela 2006 Where is the problem? Pb+Pb (158 AGeV) in the NA49 acceptance (1.1<y CM <2.9) mean value correctly reproduced Variance reproduced for central and very peripheral events Failure for mid-peripheral events

Marcus Bleicher, Santiago de Compostela 2006 Analysis of different windows the normalized variance : flat in the projectile hemisphere larger in the mirror acceptance even larger in 4  maximum around N p =40

Marcus Bleicher, Santiago de Compostela 2006 The number of participants  ’       

Marcus Bleicher, Santiago de Compostela 2006 Fluctutions in target region the fluctuation has a maximum around N p =25 introduces an asymetry between projectile and target participants leads to an increase of the multiplicity fluctuation in the target hemisphere

Marcus Bleicher, Santiago de Compostela 2006 Correlation length in rapidity Rapidity window dependence : correlation length of the order of 1 unit of rapidity  target and projectile hemisphere are independent in hadron-string models

Marcus Bleicher, Santiago de Compostela 2006 Mixing and fluctuations   I.e. the trigger condition ‘marks’ projectile and target participants This allows to study the degree of mixing of the matter produced in HIC Data suggest strong mixing of hemispheres  Hints to expanding initial fireball in contrast to string dynamics

Marcus Bleicher, Santiago de Compostela 2006 Baryon-Strangeness Correlations Definition: Idea: Strangeness and baryon number carriers are different in QGP and hadron gas. First suggested by V. Koch et al., 2005 HG: strangeness is decoupled from baryon number (mesons)  small C BS correlation QGP: strangeness is fixed to baryon number (strange quark)  large C BS correlation

Marcus Bleicher, Santiago de Compostela 2006 Lattice estimate of C BS C BS can be obtained from lattice simulations : - calculate off-diagonal susceptibilities - vanishing chemical potential - quenched approximation (no quarks of the sea) with  ss /T 2 =0.53 and  us +  ds =0,  C BS ~1 consistent with a weakly interacting QGP R.V. Gavai and S.Gupta Phys. Rev. D 67/65 A. Majumder, V. Koch, J. Randrup arXiv:nucl-th/

Marcus Bleicher, Santiago de Compostela 2006 Baryon-Strangeness Correlations 2 Limiting cases for C BS : Large  B : C BS  3/2 large acc. window: C BS  0 Explored with help of increasing rapidity window in Au+Au reaction at RHIC Present models yield similar results for small rapidity window Different handling of the fragmentation region/spectators influences results at large rapidities Haussler, Stoecker, Bleicher, hep-ph/

Marcus Bleicher, Santiago de Compostela 2006 Baryon-Strangeness Correlations 3 Energy dependence of C BS allows to study the onset of deconfinement transition Note that the QGP result is for  Here |y max |<0.5 Deviations from the HG are expected around high SPS energy region, due to QGP onset. Haussler, Stoecker, Bleicher, hep-ph/

Marcus Bleicher, Santiago de Compostela 2006 Baryon-Strangeness Correlations 4 Centrality dependence of C BS allows to study the critical volume needed for QGP formation. Note that the QGP result is for  |y max |<0.5, E cm =200AGeV Hadron-string transport models predict no centrality dependence of CBS A QGP transition leads to a strong centrality dependence Haussler, Stoecker, Bleicher, hep-ph/ , PRC in print

Marcus Bleicher, Santiago de Compostela 2006 Summary The D puzzle is solved: hadronization destroys all initial state correlations Hadron-string models fail to reproduce the measured multiplicity fluctuations  might indicate that the matter at CERN SPS is ‘mixed’ Baryon-strangeness correlations allow to pin down the onset of the QGP transition. Fluctuations and correlations are valuable tools to study heavy ion reactions. However, the interpretation is usually difficult.

Marcus Bleicher, Santiago de Compostela 2006 Thanks Elena Bratkovskaya Manuel Reiter Sascha Vogel Xianglei Zhu Horst Stoecker Diana Schumacher Hannah Petersen Stephane Haussler Diana Schumacher