Lecture 324/19/06. Section 1 Equilibrium Le Chatelier’s Solubility Section 2 Acid/Base equilibria pH Buffers Titration Section 3 Oxidation numbers Balancing.

Slides:



Advertisements
Similar presentations
Chemistry I Honors Chapter 17 Notes.
Advertisements

Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
Solid Liquid Gas MeltingVaporization Condensation Freezing.
AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY
Lecture 314/10/06. Thermodynamics: study of energy and transformations Energy Kinetic energy Potential Energy.
Lecture 324/22/05 EARTH DAY Environmental Club - Cleanup day Saturday, April 23rd at 11:00am Meet in front of Hagan on the lawn Sign-up sheet Final: Thursday.
Lecture 314/20/07. Section 1 Equilibrium Le Chatelier’s Solubility Section 2 Acid/Base equilibria pH Buffers Titration Section 3 Oxidation numbers Balancing.
Enthalpy C 6 H 12 O 6 (s) + 6O 2 (g) --> 6CO 2 (g) + 6H 2 O(l) kJ 2C 57 H 110 O O 2 (g) --> 114 CO 2 (g) H 2 O(l) + 75,520 kJ The.
Chapter 5 Thermochemistry
Lecture 294/16/07. Changes in temperature - recap Heat = (constant) x (mass) x (change in temp)
Lecture 334/25/05. 1 st Law of Thermodynamics revisited ∆E = q + w Change in Energy content heat work.
Lecture 304/18/07. Solid/Liquid Heat of fusion Solid  Liquid Endothermic ice  Water (333 J/g or 6 KJ/mol) Heat of crystallization Liquid  Solid Exothermic.
CDO Chemistry Thermodynamics 1 st Law of Thermodynamics 1 st Law – energy cannot be created or destroyed it can just change forms Energy can be.
Thermochemistry Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
6–16–1 Ch. 6 Thermochemistry The relationship between chemistry and energy Basic concept of thermodynamics Energy conversion: Energy: the capacity to do.
Energy and Heat.
Thermochemical Equations & Calorimetry
Thermodynamics Thermodynamics is the study of systems involving energy in the form of heat and work.
CHAPTER 17 THERMOCHEMISTRY.
Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of.
Thermochemistry Chapter 5 BLB 12th.
Energy, Enthalpy Calorimetry & Thermochemistry
Chapter 11 Thermochemistry Principles of Reactivity: Energy and Chemical Reactions.
1 Chapter 8 Thermochemistry. 2 Energy is... n The ability to do work. n Conserved. n made of heat and work. n a state function. n independent of the path,
Energy Thermodynamics (rev. 0910)
1 Chapter 6 EnergyThermodynamics. 2 Energy is... n The ability to do work. n Conserved. n made of heat and work. n a state function. ( dependant only.
Energy and Heat. Definitions Thermochemistry: the study of the energy changes that accompany chemical reactions Energy: A property of matter describing.
The study of the heat flow of a chemical reaction or physical change
Chapter 5 Thermochemistry. Terms I Thermochemistry –Study of – Kinetic Energy –Energy of Potential Energy –Energy of.
Thermodynamics: Energy Relationships in Chemistry The Nature of Energy What is force: What is work: A push or pull exerted on an object An act or series.
Part I (Yep, there’ll be a Part II). Energy  The capacity to do work or transfer heat  Measured in Joules  Two Types  Kinetic (motion)  Potential.
Thermochemistry Study of energy transformations and transfers that accompany chemical and physical changes. Terminology System Surroundings Heat (q) transfer.
50 mL 100 o 100 mL 25 o 150 mL (4.184 J/ o C g) q = C x  T x mass q 2 = (4.184 J/ o C g) x q 1 = - q 2 (T f - 100) x (50) = T f = 50 o C q 1 =x (T f -
Section 10.1 Energy, Temperature, and Heat 1.To understand the general properties of energy 2.To understand the concepts of temperature and heat 3.To understand.
Chapters 5 and 19.  Energy = capacity to do work  Kinetic = energy of motion  Potential = energy of position relative to other objects  Work = energy.
1 Chapter 6 EnergyThermodynamics. 2 Energy is... n The ability to do work. n Conserved. n made of heat and work. n a state function. n independent of.
Chapter 5: Thermochemistry. Thermochemistry: – Energy Kinetic & Potential – First Law of Thermo internal energy, heat & work endothermic & exothermic.
Thermochemistry Mrs. Stoops Chemistry.
Thermodynamics They study of energy and its transformations.
Heat in Reactions. Thermochemistry The study of changes in heat in a chemical reaction The study of changes in heat in a chemical reaction Part of thermodynamics.
Thermochemistry The study of the transfer of heat energy.
Thermochemistry! AP Chapter 5. Temperature vs. Heat Temperature is the average kinetic energy of the particles in a substance. Heat is the energy that.
Thermochemistry Some say the world will end in fire, Some say in ice, From what I’ve tasted of desire I hold with those who favor fire. Robert Frost Fire.
Energy and Physical Changes Energy is transferred during both chemical and physical changes, most commonly in the form of heat.
Thermal Chemistry. V.B.3 a.Explain the law of conservation of energy in chemical reactions b.Describe the concept of heat and explain the difference between.
Chapter 6 – Energy. Types of Systems Energy First Law of thermodynamics: The energy of the universe is constant (i.e. energy is neither created nor destroyed)
Chapter 5 Thermochemistry. Energy of objects Objects can possess 2 kinds of energy. KE= energy of motion E k = ½ mv 2 PE= stored energy (energy of position)
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
THERMOCHEMISTRY Study of heat change in chemical reactions.
Thermochemistry – energy or heat changes during chemical reactions energy – the capacity to do work or transfer heat 1. kinetic energy, KE = ½ mv 2 2.
Thermochemistry Some Like It Hot!!!!!. The Flow of Energy ► Thermochemistry – concerned with heat changes that occur during chemical reactions ► Energy.
Dr. Orlando E. Raola Santa Rosa Junior College
Thermochemistry. Thermodynamics  Study of the changes in energy and transfers of energy that accompany chemical and physical processes.  address 3 fundamental.
Chapter 51 Thermochemistry. 2 The Nature of Energy From Physics: Force – a kind of push or pull on an object. Energy – the capacity to do work. Work –
Thermochemistry Work We can measure the work done by the gas if the reaction is done in a vessel that has been fitted with a piston. w = −P  V.
Chemistry Unit 8 Thermochemistry Chapter The Flow of Energy Energy Transformations – Goal 1 Chemical Potential Energy Energy stored in chemical.
Thermodynamics The study of the changes of heat in chemical reactions.
Unit 13 Thermochemistry. Energy u The ability to do work or cause a change u Often measured in joules (J) u Law of Conservation of Energy – energy is.
Energy Thermodynamics.  The ability to do work.  Conserved.  made of heat and work.  a state function.  independent of the path, or how you get from.
Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education, Inc.
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
Topics 5 and 15. Hess’s Law Calorimetry Enthalpy Enthalpy of Formation Bond Energy.
© 2009, Prentice-Hall, Inc. Work Usually in an open container the only work done is by a gas pushing on the surroundings (or by the surroundings pushing.
Chapter 6 Thermochemistry: pp The Nature of Energy Energy – Capacity to do work or produce heat. – 1 st Law of Thermodynamics: Energy can.
Unit 13 Thermochemistry.
Energy Thermodynamics
Chapter 5 Changes in Matter and Energy
Enthalpy Most chemical and physical changes occur under essentially constant pressure (reactors open to the Earth’s atmosphere) very small amounts of work.
Presentation transcript:

Lecture 324/19/06

Section 1 Equilibrium Le Chatelier’s Solubility Section 2 Acid/Base equilibria pH Buffers Titration Section 3 Oxidation numbers Balancing Redox reactions Galvanic cells Standard reduction potential table

Changes in state Temperature stays the same during changes of state Gas/Vapor Liquid Solid ENERGY q = mass x constant q = moles x constant

What is the minimum amount of ice at 0 °C that must be added to a 340 mL of water to cool it from 20.5°C to 0°C?

A rainstorm deposits 2.5 x kg of rain. Calculate the quantity of thermal energy in joules transferred when this much rain forms. (∆H vap = - 44 KJ/mol) Exothermic or endothermic?

1 st Law of Thermodynamics revisited ∆E = q + w

State function property of a system whose value depends on the final and initial states, but not the path

work

Change in Enthalpy (∆H or q p ) equals the heat gained or lost at constant pressure ∆E = q p + w ∆E = ∆H + (-P∆V) ∆H = ∆E + P∆V

∆E vs. ∆H Reactions that don’t involve gases 2KOH (aq) + H 2 SO 4 (aq)  K 2 SO 4 (aq) + 2H 2 O (l) Reactions in which the moles of gas does not change N 2 (g) + O 2 (g)  2NO (g) Reactions in which the moles of gas does change 2H 2 (g) + O 2 (g)  2H 2 O (g)

Enthalpy is an extensive property Magnitude is proportional to amount of reactants consumed H 2 (g) + ½ O 2 (g)  H 2 O (g) ∆H = KJ 2H 2 (g) + O 2 (g)  2H 2 O (g) ∆H = ? Enthalpy change for a reaction is equal in magnitude (but opposite in sign) for a reverse reaction H 2 (g) + ½ O 2 (g)  H 2 O (g) ∆H = KJ H 2 O (g)  H 2 (g) + ½ O 2 (g) ∆H = ? Enthalpy change for a reaction depends on the state of reactants and products H 2 O (l)  H 2 O (g) ∆H = 88 KJ

Bond enthalpies

Constant pressure calorimetry (coffee cup calorimetry) heat lost = heat gained Measure change in temperature of water 10 g of Cu at 188 °C is added to 150 mL of water in a cofee cup calorimeter and the temperature of water changes from 25 °C to 26 °C. Determine the specific heat capacity of copper.