Calvin College Engineering Department Engineering 311 - Electronic Devices and Circuits Fall 2002 Professor:Paulo F. Ribeiro SB130 x 6407

Slides:



Advertisements
Similar presentations
Operational Amplifier
Advertisements

Operational Amplifiers
Operational Amplifiers 1. Copyright  2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith2 Figure 2.1 Circuit symbol.
Chapter 7 Operational-Amplifier and its Applications
CHAPTER 3: SPECIAL PURPOSE OP-AMP CIRCUITS
ECE 1201 Engineering Lab II.
Calvin College Engineering Department Engineering Electronic Devices and Circuits Fall 2003 Professor:Paulo F. Ribeiro SB130 x 6407
ECE 1201 Engineering Lab II. Taaruf Nor Farahidah Za’bah Room number : E Phone number : address :
APPENDIX B SPICE DEVICE MODELS AND DESIGN SIMULATION EXAMPLES USING PSPICE AND MULTISIM Microelectronic Circuits, Sixth Edition Sedra/Smith.
The Good Class and the Not So Good One: What Makes the Difference for Students Michelle Firnstein and Tom Moran Center for Multidisciplinary Studies.
Announcements Troubles with Assignments… –Assignments are 20% of the final grade –Exam questions very similar (30%) Deadline extended to 5pm Fridays, if.
Differential Amplifiers
Differential and Multistage Amplifiers
ECE 2006 Chapter 5: Operational Amplifiers. Differential Amplifier Not Practical Prior to IC Fabrication 2 Inputs, Output is A v *(V 1 - V 2 )
Chapter 2 – Operational Amplifiers Introduction Textbook CD
Calvin College Engineering Department Engineering Control Systems Fall 2004 Professor:Paulo F. Ribeiro SB134 x 6407
© Electronics ECE 1312  Nor Farahidah Za’bah  Room number : E  Phone number :  address : 
Microelectronic circuits by Meiling CHEN 1 Lecture 13 MOSFET Differential Amplifiers.
© Electronics ECE 1312 Taaruf Nor Farahidah Za’bah Room number : E Phone number : address : 
Calvin College Engineering Department Engineering Control Systems Fall 2002 Professor:Paulo F. Ribeiro SB130 x 6407
Chapter 1 Quick review over Electronics and Electric Components Prepared By : Elec Solv.
DATA ACQUISTION AND SIGNAL PROCESSING Dr. Tayab Din Memon Lecture Introduction to Opamps & Multisim.
ECE 3355 Electronics Lecture Notes Set 4 -- Version 21
IDEAL OPERATIONAL AMPLIFIER AND OP-AMP CIRCUITS
Chapter 6: Bipolar Junction Transistors
ECE 3455 Electronics Lecture Notes Set 6 -- Version 5 Bipolar Junction Transistors Dr. Dave Shattuck Dept. of ECE, Univ. of Houston.
ECE 3455 Electronics Summer 2003 MTWTh,2-4, E321 Instructor: Dr. Reza Ashouri.
College & Career Sunday School Class Rivermont Presbyterian Church P. Ribeiro 1 Feb. 8, 98 We Have No ‘Right to Happiness’, C.S. Lewis March 8, 1998 (This.
Agenda and Notes Today, during class! 9:30 a.m. Boeing Space and Intelligence Systems (Matt and Matt) 4 extra credit assignments available at the bottom.
Lecture 0 Course Overview. ES 330 Electronics I Course description: Theory, characteristics and operation of MOSFET transistors, elementary amplifier.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 5, slide 1 Introduction to Electronic Circuit Design.
Chapter #8: Differential and Multistage Amplifiers
HW due Friday (10/18) 6.39,6.61,6.71,6.80 October 15, 2002.
© Electronics ECE 1312  Nor Farahidah Za’bah  Room number : E  Phone number :  address : 
Fundamentals of Electric Circuits Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ECE 3355 Electronics Lecture Notes -- Set 1 -- Version 13 Dr. Dave Shattuck Dept. of ECE, Univ. of Houston.
EMT 111/4 ELECTRONIC DEVICES (PERANTI ELEKTRONIK)
Electronics 1 Introductory Lecture Ahsan Khawaja Lecturer Room 102 Department of Electrical Engineering.
E E 2315 Lecture 08 - Introduction to Operational Amplifiers.
Chapter 15 Differential Amplifiers and Operational Amplifier Design
Electronics The sixteenth and seventeenth Lectures Thirteenth week 3 -6/ 2/ 1437 هـ أ / سمر السلمي.
EMT 111/4 ELECTRONIC DEVICES (PERANTI ELEKTRONIK).
Course Title : ECE-246 Fundamental of Electronics Lecture #1 : Introduction Instructor: Dr. Selma Özaydın.
1 Differential Amplifier Input of every operational amplifier is a differential amplifier Performance of the differential pair depends critically on the.
1 Operational Amplifiers n Ideal Op-Amp –input terminals –differential gain, open-loop gain.
Single Phase Induction Motor Speed Control. Introduction Single Phase Induction Motor Speed Control  Induction motors are.
ARUN MUCHHALA ENGINEERING COLLEGE- DHARI [ ] ANALOG ELECTRONICS Prajapati Omprakash rd ELECTRICAL DEPARTMENT ANALOG ELECTRONICS.
Website: Nor Farahidah Za’bah Room number : E Phone number : address :
EEE 206 Electronics I Assist. Prof. Dr. Mustafa Musić Galib Sikirić
ECE 3355 Electronics Lecture Notes Set 6 – Version 8
ECE 3355 Electronics Lecture Notes -- Set 1 -- Version 15
Microelectronic Circuits Spring, 2017
Fundamentals of Electric Circuits Chapter 5
Microelectronic Circuits Chapter 9. Operational Amplifiers
EKT104 ANALOG ELECTRONIC CIRCUITS [LITAR ELEKTRONIK ANALOG]
Microelectronic Circuits Spring, 2013
Website: Nor Farahidah Za’bah Room number : E Phone number : address :
Microelectronic Circuits Chapter 9. Operational Amplifiers
Lecture 01: Introduction
EE 435 Spring Lecture 1 Course Outline.
Electrical Engineering Lab I
IDEAL OPERATIONAL AMPLIFIER AND OP-AMP CIRCUITS
Dr. Nor Farahidah Za’bah Room number : E
EET205/4 ANALOG ELECTRONICS Introduction.
Dr. Nor Farahidah Za’bah Room number : E
Dr. Nor Farahidah Za’bah Room number : E
Fundamentals of Electric Circuits Chapter 5
Website: Nor Farahidah Za’bah Room number : E Phone number : address :
Chapter 5 Operational Amplifiers
سلامت داتغ & اَهْلاً وَسَهْلاً
Presentation transcript:

Calvin College Engineering Department Engineering Electronic Devices and Circuits Fall 2002 Professor:Paulo F. Ribeiro SB130 x Textbooks:Sedra / Smith, Microelectronic Circuits, Fourth Edition Lectures: 11:30-12:20PM (MWF)NHB54 Labs: (Thursdays 8:30-11:20 AM) SB076

Introduction Learning Process: An Integrated-Participative Approach (No Spoon-Feeding) General Goals: Design of Electronic Systems, Character Instruction: Variety of Methods - Web-Based-Self-Paced Progress Evaluation: Take-Home Design Tests No Student versus Instructor Responsibility and Interaction “The only people who achieve much are those who want knowledge so badly that they seek it while the conditions are still unfavorable. Favorable conditions never come.” CS Lewis

Students are, then, strongly encouraged (in the context of studying engineering fundamentals and applied disciplines) to: 1- Become immersed (mind and heart) and take ownership of the learning process; 2- Strive for excellence in learning the fundamentals and applications of engineering design related disciplines; 3- Consider engineering in a broader context, and to appreciate the multi-faceted nature, coherency and unity of creation; 4- Understand the real world reality (in terms of businesses, economics and politics) in which projects are developed; 5-Make the connection between faith and engineering practice and find ways in which engineering can be used as a redemptive tool; 6-Translate into their designs normative, sustainable characteristics and integrity, or in other words, the permanent moral values; 7- Realize that Christian engineering, though sometimes apparently indistinguished from the “humanist” technology, needs to lead the way in considering the unity, coherency and diversity of creation; 8- Articulate and communicate their understanding through presentations and paper writing for professional and educational conferences; 9- Grow and gain maturity in their emotions, sentiments and spirituality; 10 -Demonstrate their passion and compassion as they seek to learn and serve God in the engineering arena; All of these need to be achieved in a balanced way - that is, Christian engineers are to cultivate their relationship with God and seek to serve Him in all areas of life.

“It often happens that two students can solve difficulties in their work for one another better than the master can. When you took the problem to a master, as we all remember, he was very likely to explain what you understood already, to add a great deal of information which you didn’t want, and say nothing at all about the thing that was puzzling you. I have watched this from both sides of the net; for when, as a teacher myself, I have tried to answer questions brought me by students, I have sometimes, after a minute, seen that expression settle down on their faces which assured me that they were suffering exactly the same frustration which I had suffered from my own teachers. The fellow-student can help more than the master because he knows less. The difficulty we want him to explain is one he has recently met. The expert met it so long ago that he has forgotten. He sees the whole subject, by now, in a different light that he cannot conceive what is really troubling the student; he sees a dozen other difficulties which ought to be troubling him but aren’t.” CS Lewis

Quote from Derek Brewer about the way Lewis taught at Oxford (through tutoring): “It conceived of learning as a way of life, exemplified by the bachelor fellows who normally lived in the college. They read books in their own rooms, where they lived, not in “offices”: they had no secretaries. Their reading, thinking and writing were part of a unified life, neither “job” nor “recreation,” because they were both. They did not, strictly speaking, “teach.” In the morning and evenings of the term they were visited in their rooms by arrangement by their pupils, who “read the subject with them.” It was not exactly an egalitarian society, but there was a sense of fundamental equality and unity, divided into ranks and stages. I had not doubt, at the age of eighteen, that for all the differences of temperament, intelligence, ability, learning, repute, and age between me and this distinguished, jolly man, we were nevertheless of the same kind, engaged in the same pursuit. And the reason I felt this was no doubt because that was how Lewis treated me. I was not a school boy to be taught and disciplined, not a “student,” but a “man ”

"I only once detected a pupil offering me some one else (Elton) as his own work. I told him I was not a detective nor even a schoolmaster, nor a nurse, and that I absolutely refused to take any precaution against this puerile trick; that I'd as soon think it my business to see that he washed behind his ears or wiped his bottom. He went down of his own accord the next week and I never saw him again. I think you ought to make a general announcement of that sort. It is bad for them to think this is "up to you." Flay them alive if you happen to detect them; but don't let them feel that you are a safeguard against the effects of their own idleness. What staggers me is how any man can prefer the galley-slave labor of transcription to the freeman's work of attempting an essay on his own."

“Engineering is a human cultural activity that involves an interplay between theory, experiment and imagination, in which human beings form and transform nature for practical ends and purposes, with the aid of tools and procedures.”

Schedule TopicsChapter # of classes Introduction to Electronics (Review)12 -Signals and Frequency Spectrum -Analog and Digital Signals -Amplifiers and Models -Circuit Models for Amplifiers -Frequency Response of Amplifiers Operation Amplifiers26 -The Ideal Amplifier -Circuits Containing Ideal Op-amps -Inverting and Non-inverting Configurations -Examples -Effect of Finite Open Loop Gain -Large-Signal Operation -DC Imperfections Diodes3 6 -The Ideal Diode -Terminal Characteristics of Junction Diodes -Physical Operation -Analysis of Diode Circuits -The Small-Signal Model -Zener Diodes -Rectifier Circuits -Limiting and Clamping Circuits -The PSpice Models and Simulation No classes on October 4, 7 and 9 - Take Home Exam I: Chapters 1 – 3Due October 12.

Bipolar Junction Transistors49 -Physical Structure and Modes of Operation -Operation of the npn Transistor in the Active Mode -The pnp Transistor -Circuit Symbols and Conventions -Graphical Representation -Analysis at DC -The Transistor as an Amplifier -Small-signal Equivalent Circuits -Biasing Single-Stage BJT Amplifier -The Transistor as a Switch -Large-Signal Model -The Complete Static Characteristics -The PSpice Model and Examples Field Effect Transistors59 -Structure and Operation of the Enhancement -Type MOSE -V-I Characteristics of the Enhancement-Type MOSFET -The Depletion-Type MOSFET -MOSFET Circuits at DC -The MOSFET as an Amplifier Individual Projects(for extra credit) Take Home Exam II: Chapter 4 – 5 Due November 17 Christian Perspective on MicroelectronicsDiscussion1 Schedule

Lab Schedule: 1 – 9/12 Familiarity with PSpice, Cadence, Web-Based Simulation Tools and Lab Instruments (Groups 1 and 2) Instructions Web-Based Java Simulation Tools PSpice and Cadence Cadence PowerPoint Presentation Experiment: 1 – Construct a series RLC with a sinusoidal voltage source and perform a frequency sweep and transient analysis. Play with different parameters and observe the output. 2 - – Implement an Op Amp (use an inverting amplifier). Play with different input signals and parameters and observe the output. Electronic Shop (Chuck Holwerda) SB039 / SB067 Electronic Shop (Session 1) September 12 (Groups 1 and 2) Electronic Shop (Session 2) October 3 (Group 1), October 10 (Group2) Safety, Soldering and De-Soldering, Blinky Project

Lab Schedule: 2 – 9/19Operational Amplifiers 3 – 9/26Junction-Diode Basics 4 – 10/3Electronics Shop (Report to E-Shop Room SB039) Group 1 5 – 10/10Electronics Shop (Report to E-Shop Room SB039) Group 2 6 – 10/17Junction-Diode Basics 7 – 10/24Bipolar-Transistors Basics 8 – 10/31MOSFET Measurement and Applications 9 – 11/7Power Supply (*) 9 – 11/14The BJT Differential Pair Applications 10 –11/21 Single-BJT amplifiers (Low and High Frequencies) 11 – 11/28Personal Projects (*) 12 – 12/5Personal Projects (*) 13 – 12/12Personal Projects (*)

Group 1Group 2

Basic Homework Assignments (Minimum List) Students are recommended to work out most of the problems in the back of each assigned chapter. Additional Interactive Examples from accompanying CD and design problems will also be required to be completed. Chapter 1Problems -Frequency Spectrum 1.4 -Amplifiers and Models 1.12, Frequency Response of Amplifiers 1.37, Design ProblemsTBD -Interactive Examples from CD) Chapter 2 -The Ideal Amplifier 2.2 -Circuits Containing Ideal Opamps Inverting and Non-inverting Configurations2.30, Examples2.55 -Effect of Finite Open Loop Gain2.71 -Large-Signal Operation2.82 -DC Imperfections2.93 -Design ProblemsTBD -Interactive Examples from CD) Chapter 3 -The Ideal Diode3.3, Terminal Characteristics of Junction Diodes3.21, Physical Operation3.31, Analysis of Diode Circuits3.48, The Small-Signal Model3.67, Zener Diodes3.77 -Rectifier Circuits3.81, Limiting and Clamping Circuits Design ProblemsTBD

Basic Homework Assignments (Minimum List) Chapter 4 -Operation - Transistor in the Active Mode4.9, The pnp Transistor4.15, Analysis at DC4.32, The Transistor as an Amplifier4.43, Small-signal Equivalent Circuits4.52, Biasing Single-Stage BJT Amplifier4.76, 4.78, The Transistor as a Switch4.99 -Large-Signal Model The Complete Static Characteristics Design ProblemsTBD -Interactive Examples from CD) Chapter 5 -Structure and Operation of the Enhancement -Type MOSFET5.3, 5.4 -V-I Characteristics of the Enhancement-Type MOSFET5.12, The Depletion-Type MOSFET5.28, 5.32, -MOSFET Circuits at DC5.34, The MOSFET as an Amplifier5.47, Biasing in MOS Amplifier Circuits5.61, Basic Config. of Single-Stage IC MOS Amp The JFT Design ProblemsTBD -Interactive Examples from CD)

Final Take Home Exam: Due December 19 Grading will be as follows: Labs15% Test I15% Test II15% Participation / Interaction15% Homework15% Final Exam25% All laboratory and homework exercises must be turned in on time for full credit. Late assignments will be assessed a penalty. Assignments more than one week late will be assessed a 50% penalty. Although not required, homework and lab assignments should be prepared electronically (MathCAD, PSpice, MATLAB / Simulink, PSCAD, etc.).