Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,

Slides:



Advertisements
Similar presentations
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Advertisements

CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
The state-of-art based GaAs HBT
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
Ultra High Speed InP Heterojunction Bipolar Transistors Mattias Dahlström Trouble is my business, (Raymond Chandler)
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
Katedra Experimentálnej Fyziky Bipolar technology - the size of bipolar transistors must be reduced to meet the high-density requirement Figure illustrates.
1 LW 6 Week 6 February 26, 2015 UCONN ECE 4211 F. Jain Review of BJT parameters and Circuit Model HBT BJT Design February 26, 2015 LW5-2 PowerPoint two.
1 Bipolar Junction Transistor Models Professor K.N.Bhat Center for Excellence in Nanoelectronics ECE Department Indian Institute of Science Bangalore-560.
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Ultra high speed heterojunction bipolar transistor technology Mark Rodwell University of California, Santa Barbara ,
Indium Phosphide Bipolar Integrated Circuits: 40 GHz and beyond Mark Rodwell University of California, Santa Barbara ,
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
InP HBT Digital ICs and MMICs in the GHz band , fax Mark Rodwell University of California, Santa.
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits ,
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
Introduction to GaAs HBT and current technologies
A High-Dynamic-Range W-band
20th IPRM, MAY 2008, Versallies-France
Lower Limits To Specific Contact Resistivity
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Presentation transcript:

Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, , USA Xiao-Ming Fang, Dmitri Loubychev, Ying Wu, Joel M. Fastenau, and Amy Liu IQE Inc. 119 Bethlehem, PA 18015, USA , fax 250 nm InGaAs/InP DHBT with 650 GHz f max and 420 GHz f t, operating above 30 mW/μm 2

InP/InGaAs Double Heterostructure Bipolar Transistor Mesa DHBTs for high speed applications Abrubt InP-InGaAs emitter base junction InGaAs base provides good hole mobility Setback and Grade used for BC junction InP collector Subcollector Base Emitter Collector S.I. InP Objective: Improve DHBT performance by lateral scaling of emitter-base junction!

Fast bipolar transistors UCSB 0.25μm UCSB 0.6μm

Standard figures of merit / Effects of Scaling Small signal current gain cut-off frequency (from H 21 ) Charging time for digital logic Power gain cut-off frequency (from U) Thinning epitaxial layers ( vertical scaling ) reduces base and collector transit times… But increases capacitances Increase current density and reduce resistances. Reduce R bb and C cb,i through lateral scaling Higher J kirk, dimished self-heating due to current increased current spreading

Fabrication I – Epitaxial Stack: 150 nm Collector Thickness (nm)MaterialDoping cm -3 Description 5In 0.85 Ga 0.15 As 5  : Si Emitter cap 15In x Ga 1-x As > 4  : Si Emitter cap grading 20In 0.53 Ga 0.47 As 4  : Si Emitter 80InP 3  : Si Emitter 10InP 8  : Si Emitter 40InP 8  : Si Emitter 30InGaAs 7-4  : C Base 15In 0.53 Ga 0.47 As 3.5  : Si Setback 24InGaAs / InAlAs 3.5  : Si B-C Grade 3InP 2.75  : Si Pulse doping 108InP 3.5  : Si Collector 5InP 1  : Si Sub Collector 6.5In 0.53 Ga 0.47 As 2  : Si Sub Collector 300InP 2  : Si Sub Collector SubstrateSI : InP 150 nm collector 30 nm base, graded carbon doping Thin, 6.5nm InGaAs subcollector High f max device with moderate f τ High V ceo Investigate J max increase due to improved thermal capabilities and current spreading – increase in f τ

Fabrication II – Lateral Scaling Fabrication Details : I-line optical lithography All wet etch, lift-off based process 250 nm emitter / base junction Reduction in C bc by removing semiconductor under base pad BCB passivation DHBT before BCB passivationEmitter Metal Removed Base contact Emitter Mesa W e =250 nm Base contact Emitter Contact W e =400nm

RF and DC performance Summary of device parameters— Average   25, V BR, CEO ~ 5 V 1kA/μm 2 ) f max =650 GHz f t =420 GHz Operates at power densities above 30mW/μm GHz 420 GHz V ceo

f t, f max and C Cb variation J kirk  12 mA/μm 2 V cb =0.6V) Limited by collector doping and thermal effects C cb /I c =0.30 pS ftft f max C bc

Small signal equivivalent circuit at maximum f t, f max Summary resistive elements Emitter contact (from RF extraction), R cont  5.0  m 2 Base (from TLM) : R sheet = 635  /sq, R cont < 5.0  m 2 Collector (from TLM) : R sheet = 12.7  /sq, R cont = 10.0  m 2 S 21 /20 S 12 x5 S 11 S GHz A je =0.25  3.1μm 2 I c =9mA V ce =1.56V Total delay time: 1/2πf τ = 0.38 pS Base and collector transit times = 0.29pS Terms related to C cb = 38 fS Larger bandwidth through vertical scaling

Breakdown mechanism for Type-I InP DHBTs I b =I b (V cb =0) - (M-1)  αI e – I zener Breakdown essentially set by tunneling through setback region BV ceo ~ 5V Proper design of setback and grade is needed for vertical scaling of the collector Impact Ionization Band to band tunneling

Comparison with 0.6μm 150nm T c UCSB DHBT Emitter Width – 0.6  m Emitter contact - R cont  10.1  m 2 Base Contact - R cont  9.6  m 2 J kirk ~ 5.5 mA/  m 2 (P max ~ 15 mW/  m 2 ) f  / f max = 391,505 GHz Griffith et al., IEEE Electron Device Letters, Vol. 26, Jan Emitter Width – 0.25  m Emitter contact - R cont  5.0  m 2 Base Contact - R cont < 5.0  m 2 J kirk ~ 12 mA/  m 2 (P max ~ 30 mW/  m 2 ) f  / f max = 420,650 GHz

Comparison with SHBT and GaAsSb technologies Type I InP DHBTs combines high f  / f max with high power densities and breakdown voltages InP SHBTs (utilizing InGaAs collector) have very high f t and f max, but low breakdown voltages. InP Type-II DHBTs (InP/GaAsSb/InP) have high breakdown, but f max is low due to base resistance. InP SHBT—InGaAs base and collector (55nm) Type-II DHBT—GaAsSb base, InP collector (150nm) H.G. Liu et al., IEEE TED, Vol. 53, No. 3, 2006 W. Hafez et al., APL, Vol. 87, 2006 f  / f max = 710 / 340 GHz Type-I DHBT—InGaAs base, InP collector, ternary B-C grading f  / f max = 420 / 650 GHz f  / f max = 380 / 250 GHz BV ceo ~ 1.75V

Bipolar Transistor Scaling Laws & Scaling Roadmaps key device parameterrequired change collector depletion layer thicknessdecrease 2:1 base thicknessdecrease 1.414:1 emitter junction widthdecrease 4:1 collector junction widthdecrease 4:1 emitter resistance per unit emitter areadecrease 4:1 current densityincrease 4:1 base contact resistivity (if contacts lie above collector junction) decrease 4:1 base contact resistivity (if contacts do not lie above collector junction) unchanged Scaling Laws: design changes required to double transistor bandwidth key figures of merit for logic speed Technology Roadmap through 330 GHz digital clock rate The current device is Gen 2.5. Key enabling technologies for the THz transistor

Present Status of Fast Transistors UCSB 0.25μm UCSB 0.6μm

Conclusion First generation of UCSB 250nm DHBT device f t /f max = 420/650 GHz Record f max for a DHBT High power density ~ 30 mW/ μm 2 High Kirk threshold ~ 12 mA/ μm 2 High BV eco ~ 5V Further scaling is feasible This work was supported by the DARPA SWIFT program, the ONR under N , DARPA TFAST program N C-8080, and a grant by the Swedish Research Council.