Edge Detection.

Slides:



Advertisements
Similar presentations
Boundary Detection - Edges Boundaries of objects –Usually different materials/orientations, intensity changes.
Advertisements

Hough Transform Reading Watt, An edge is not a line... How can we detect lines ?
Edge Detection CSE P 576 Larry Zitnick
Edge and Corner Detection Reading: Chapter 8 (skip 8.1) Goal: Identify sudden changes (discontinuities) in an image This is where most shape information.
EE663 Image Processing Edge Detection 1
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Lecture 4 Edge Detection
Edge detection. Edge Detection in Images Finding the contour of objects in a scene.
Announcements Mailing list: –you should have received messages Project 1 out today (due in two weeks)
EE663 Image Processing Edge Detection 2 Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals.
Edges and Scale Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski – From Sandlot ScienceSandlot.
Lecture 2: Edge detection and resampling
CS223b, Jana Kosecka Image Features Local, meaningful, detectable parts of the image. Line detection Corner detection Motivation Information content high.
Edge Detection Today’s reading Forsyth, chapters 8, 15.1
Lecture 3: Edge detection, continued
Lecture 2: Image filtering
Announcements Since Thursday we’ve been discussing chapters 7 and 8. “matlab can be used off campus by logging into your wam account and bringing up an.
Image Primitives and Correspondence
Edge Detection Today’s readings Cipolla and Gee –supplemental: Forsyth, chapter 9Forsyth Watt, From Sandlot ScienceSandlot Science.
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30 – 11:50am.
CS559: Computer Graphics Lecture 3: Digital Image Representation Li Zhang Spring 2008.
Lecture 2: Edge detection CS4670: Computer Vision Noah Snavely From Sandlot ScienceSandlot Science.
Generalized Hough Transform
Edge Detection Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels.
Image Processing Edge detection Filtering: Noise suppresion.
Edges. Edge detection schemes can be grouped in three classes: –Gradient operators: Robert, Sobel, Prewitt, and Laplacian (3x3 and 5x5 masks) –Surface.
Introduction to Image Processing
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection From Sandlot ScienceSandlot Science.
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski, Ch 4.1.2, From Sandlot.
SHINTA P. Juli What are edges in an image? Edge Detection Edge Detection Methods Edge Operators Matlab Program.
Instructor: S. Narasimhan
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
EE 4780 Edge Detection.
Many slides from Steve Seitz and Larry Zitnick
Edge Detection and Geometric Primitive Extraction Jinxiang Chai.
Brent M. Dingle, Ph.D Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Edge Detection.
Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos VC 15/16 – TP7 Spatial Filters Miguel Tavares Coimbra.
CSE 6367 Computer Vision Image Operations and Filtering “You cannot teach a man anything, you can only help him find it within himself.” ― Galileo GalileiGalileo.
Announcements Project 0 due tomorrow night. Edge Detection Today’s readings Cipolla and Gee (handout) –supplemental: Forsyth, chapter 9Forsyth For Friday.
Machine Vision Edge Detection Techniques ENT 273 Lecture 6 Hema C.R.
Computer Vision Image Features Instructor: Dr. Sherif Sami Lecture 4.
Instructor: Mircea Nicolescu Lecture 5 CS 485 / 685 Computer Vision.
Lecture 8: Edges and Feature Detection
Last Lecture photomatix.com. Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image.
Finding Boundaries Computer Vision CS 143, Brown James Hays 09/28/11 Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li,
CS440 / ECE 448 – Fall 2006 Lecture #2 CS 440 / ECE 448 Introduction to Artificial Intelligence Fall 2006 Instructor: Eyal Amir TAs: Deepak Ramachandran.
Edges Edges = jumps in brightness/color Brightness jumps marked in white.
Winter in Kraków photographed by Marcin Ryczek
Miguel Tavares Coimbra
Edge Detection slides taken and adapted from public websites:
Fitting: Voting and the Hough Transform
Edge Detection CS 678 Spring 2018.
Edge Detection EE/CSE 576 Linda Shapiro.
Lecture 2: Edge detection
Jeremy Bolton, PhD Assistant Teaching Professor
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Review: Linear Systems
Filters (Smoothing, Edge Detection)
Edge Detection Today’s reading
Edge Detection CSE 455 Linda Shapiro.
Edge Detection Today’s reading
Lecture 2: Edge detection
Hough Transform.
Edge Detection Today’s reading
Edge Detection Today’s readings Cipolla and Gee Watt,
Lecture 2: Edge detection
IT472 Digital Image Processing
IT472 Digital Image Processing
Edge Detection ECE P 596 Linda Shapiro.
Presentation transcript:

Edge Detection

Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels

Origin of Edges Edges are caused by a variety of factors surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused by a variety of factors

Edge detection How can you tell that a pixel is on an edge?

Profiles of image intensity edges

Edge detection Detection of short linear edge segments (edgels) Aggregation of edgels into extended edges (maybe parametric description)

Edgel detection Difference operators Parametric-model matchers

Edge is Where Change Occurs Change is measured by derivative in 1D Biggest change, derivative has maximum magnitude Or 2nd derivative is zero.

Image gradient The gradient of an image: The gradient points in the direction of most rapid change in intensity The gradient direction is given by: how does this relate to the direction of the edge? The edge strength is given by the gradient magnitude

The discrete gradient How can we differentiate a digital image f[x,y]? Option 1: reconstruct a continuous image, then take gradient Option 2: take discrete derivative (finite difference) How would you implement this as a cross-correlation?

The Sobel operator Better approximations of the derivatives exist The Sobel operators below are very commonly used -1 1 -2 2 1 2 -1 -2 The standard defn. of the Sobel operator omits the 1/8 term doesn’t make a difference for edge detection the 1/8 term is needed to get the right gradient value, however

Gradient operators (a): Roberts’ cross operator (b): 3x3 Prewitt operator (c): Sobel operator (d) 4x4 Prewitt operator

Effects of noise Consider a single row or column of the image Plotting intensity as a function of position gives a signal Where is the edge?

Solution: smooth first Where is the edge? Look for peaks in

Derivative theorem of convolution This saves us one operation:

Laplacian of Gaussian Consider Where is the edge? operator Where is the edge? Zero-crossings of bottom graph

2D edge detection filters Laplacian of Gaussian Gaussian derivative of Gaussian is the Laplacian operator:

Optimal Edge Detection: Canny Assume: Linear filtering Additive iid Gaussian noise Edge detector should have: Good Detection. Filter responds to edge, not noise. Good Localization: detected edge near true edge. Single Response: one per edge.

Optimal Edge Detection: Canny (continued) Optimal Detector is approximately Derivative of Gaussian. Detection/Localization trade-off More smoothing improves detection And hurts localization. This is what you might guess from (detect change) + (remove noise)

The Canny edge detector original image (Lena)

The Canny edge detector norm of the gradient

The Canny edge detector thresholding

The Canny edge detector thinning (non-maximum suppression)

Non-maximum suppression Check if pixel is local maximum along gradient direction requires checking interpolated pixels p and r

Predicting the next edge point (Forsyth & Ponce) Assume the marked point is an edge point. Then we construct the tangent to the edge curve (which is normal to the gradient at that point) and use this to predict the next points (here either r or s). (Forsyth & Ponce)

Hysteresis Check that maximum value of gradient value is sufficiently large drop-outs? use hysteresis use a high threshold to start edge curves and a low threshold to continue them.

Effect of  (Gaussian kernel size) original Canny with Canny with The choice of depends on desired behavior large detects large scale edges small detects fine features

Scale Smoothing Eliminates noise edges. Makes edges smoother. Removes fine detail. Figures show gradient magnitude of zebra at two different scales (Forsyth & Ponce)

fine scale high threshold

coarse scale, high threshold

coarse scale low threshold

Scale space (Witkin 83) larger first derivative peaks larger Gaussian filtered signal Properties of scale space (w/ Gaussian smoothing) edge position may shift with increasing scale () two edges may merge with increasing scale an edge may not split into two with increasing scale

Edge detection by subtraction original

Edge detection by subtraction smoothed (5x5 Gaussian)

Edge detection by subtraction Why does this work? smoothed – original (scaled by 4, offset +128) filter demo

Gaussian - image filter delta function Laplacian of Gaussian

An edge is not a line... How can we detect lines ?

Finding lines in an image Option 1: Search for the line at every possible position/orientation What is the cost of this operation? Option 2: Use a voting scheme: Hough transform

Finding lines in an image y b b0 x m0 m image space Hough space Connection between image (x,y) and Hough (m,b) spaces A line in the image corresponds to a point in Hough space To go from image space to Hough space: given a set of points (x,y), find all (m,b) such that y = mx + b

Finding lines in an image y b A: the solutions of b = -x0m + y0 this is a line in Hough space y0 x0 x m image space Hough space Connection between image (x,y) and Hough (m,b) spaces A line in the image corresponds to a point in Hough space To go from image space to Hough space: given a set of points (x,y), find all (m,b) such that y = mx + b What does a point (x0, y0) in the image space map to?

Hough transform algorithm Typically use a different parameterization d is the perpendicular distance from the line to the origin  is the angle this perpendicular makes with the x axis Why?

Hough transform algorithm Typically use a different parameterization d is the perpendicular distance from the line to the origin  is the angle this perpendicular makes with the x axis Why? Basic Hough transform algorithm Initialize H[d, ]=0 for each edge point I[x,y] in the image for  = 0 to 180 H[d, ] += 1 Find the value(s) of (d, ) where H[d, ] is maximum The detected line in the image is given by What’s the running time (measured in # votes)?

Extensions Extension 1: Use the image gradient same for each edge point I[x,y] in the image compute unique (d, ) based on image gradient at (x,y) H[d, ] += 1 What’s the running time measured in votes? Extension 2 give more votes for stronger edges Extension 3 change the sampling of (d, ) to give more/less resolution Extension 4 The same procedure can be used with circles, squares, or any other shape

Extensions Extension 1: Use the image gradient same for each edge point I[x,y] in the image compute unique (d, ) based on image gradient at (x,y) H[d, ] += 1 What’s the running time measured in votes? Extension 2 give more votes for stronger edges Extension 3 change the sampling of (d, ) to give more/less resolution Extension 4 The same procedure can be used with circles, squares, or any other shape

Hough demos Line : http://www/dai.ed.ac.uk/HIPR2/houghdemo.html http://www.dis.uniroma1.it/~iocchi/slides/icra2001/java/hough.html Circle : http://www.markschulze.net/java/hough/

Hough Transform for Curves The H.T. can be generalized to detect any curve that can be expressed in parametric form: Y = f(x, a1,a2,…ap) a1, a2, … ap are the parameters The parameter space is p-dimensional The accumulating array is LARGE!

Generalizing the H.T. The H.T. can be used even if the curve has not a simple analytic form! (xc,yc) fi ri Pi ai Pick a reference point (xc,yc) For i = 1,…,n : Draw segment to Pi on the boundary. Measure its length ri, and its orientation ai. Write the coordinates of (xc,yc) as a function of ri and ai Record the gradient orientation fi at Pi. Build a table with the data, indexed by fi . xc = xi + ricos(ai) yc = yi + risin(ai)

Suppose, there were m different gradient orientations: Generalizing the H.T. Suppose, there were m different gradient orientations: (m <= n) fi ri ai fj rj aj f1 f2 . fm (r11,a11),(r12,a12),…,(r1n1,a1n1) (r21,a21),(r22,a12),…,(r2n2,a1n2) (rm1,am1),(rm2,am2),…,(rmnm,amnm) (xc,yc) Pi xc = xi + ricos(ai) yc = yi + risin(ai) H.T. table

Generalized H.T. Algorithm: Finds a rotated, scaled, and translated version of the curve: Form an A accumulator array of possible reference points (xc,yc), scaling factor S and Rotation angle q. For each edge (x,y) in the image: Compute f(x,y) For each (r,a) corresponding to f(x,y) do: For each S and q: xc = xi + r(f) S cos[a(f) + q] yc = yi + r(f) S sin[a(f) + q] A(xc,yc,S,q) ++ Find maxima of A. fj aj q Srj Pj Pi fi Sri ai q (xc,yc) Pk fi Srk ak q xc = xi + ricos(ai) yc = yi + risin(ai)

H.T. Summary H.T. is a “voting” scheme points vote for a set of parameters describing a line or curve. The more votes for a particular set the more evidence that the corresponding curve is present in the image. Can detect MULTIPLE curves in one shot. Computational cost increases with the number of parameters describing the curve.

Corners contain more edges than lines. Corner detection Corners contain more edges than lines. A point on a line is hard to match.

Corners contain more edges than lines. A corner is easier

Edge Detectors Tend to Fail at Corners

Finding Corners Intuition: Right at corner, gradient is ill defined. Near corner, gradient has two different values.

Formula for Finding Corners We look at matrix: Gradient with respect to x, times gradient with respect to y Sum over a small region, the hypothetical corner WHY THIS? Matrix is symmetric

First, consider case where: This means all gradients in neighborhood are: (k,0) or (0, c) or (0, 0) (or off-diagonals cancel). What is region like if: l1 = 0? l2 = 0? l1 = 0 and l2 = 0? l1 > 0 and l2 > 0?

General Case: From Linear Algebra, it follows that because C is symmetric: With R a rotation matrix. So every case is like one on last slide.

So, to detect corners Filter image. Compute magnitude of the gradient everywhere. We construct C in a window. Use Linear Algebra to find l1 and l2. If they are both big, we have a corner.