Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

A.V. Koudinov, Yu. G. Kusrayev A.F. Ioffe Physico-Technical Institute St.-Petersburg, Russia L. C. Smith, J. J. Davies, D. Wolverson Department.
Topological Insulators
Coherently induced ferromagnetism in Diluted Magnetic Semiconductors Southampton, OCES9-SCES2 September 7 st 2005 Joaquín Fernández-Rossier Dept. Física.
Joaquín Fernández-Rossier (1) and L. Brey (2)
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Apoio: Esta apresentação pode ser obtida do site seguindo o link em “Seminários, Mini-cursos, etc.” Hole concentration.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Spintronics = Spin + Electronics
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
Single Spin Detection J. Fernández-Rossier IUMA, Universidad de Alicante, Spain Manipulation and Measurement of the Quantum State of a single spin in a.
Image courtesy of Keith Schwab.
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
Spin effects in diluted magnetic semiconductors M. Vladimirova, P. Barate, S. Cronenberger, F. Teppe and D. Scalbert, Groupe d'Etude des Semi-conducteurs,
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Phase Transformations: – many different kinds of phase transitions: dimension, microscopic origin… – cooperativity (dominos’ effect) play a key role Example:
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Optical quantum control in semiconductors nano-systems Carlo Piermarocchi Department of Physics and Astronomy Michigan State University, East Lansing,
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Electrochemistry for Engineers LECTURE 11 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
Theory of Intersubband Antipolaritons Mauro F
1 P1X: Optics, Waves and Lasers Lectures, Lasers and their Applications i) to understand what is meant by coherent and incoherent light sources;
Charge Carrier Related Nonlinearities
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
1 P. Huai, Feb. 18, 2005 Electron PhononPhoton Light-Electron Interaction Semiclassical: Dipole Interaction + Maxwell Equation Quantum: Electron-Photon.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Dynamics of collective spin excitations in n-doped CdMnTe quantum wells M. Vladimirova, P. Barate, S. Cronenberger, D. Scalbert Groupe d'Etude des Semi-conducteurs,
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Sample : GaAs (8nm) / Al 0.3 Ga 0.7 As (10nm) ×20 multiple quantum wells Light source : Mode-locked femtosecond Ti-sapphire laser Detection : Balancing.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Region of possible oscillations
ZnCo 2 O 4 : A transparent, p-type, ferromagnetic semiconductor relevant to spintronics and wide bandgap electronics Norton Group Meeting 4/1/08 Joe Cianfrone.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Quantum information processing with electron spins Florian Meier and David D. Awschalom Funding from: Optics & Spin Physics.
EE105 - Spring 2007 Microelectronic Devices and Circuits
Unbiased Numerical Studies of Realistic Hamiltonians for Diluted Magnetic Semiconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee,
橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B.
Types of Semiconductor Detectors
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Conditional Dynamics of Interacting Quantum Dots Lucio Robledo, Jeroen Elzerman, Gregor Jundt, Mete Atatüre, Alexander Högele, Stefan Fält, Atac Imamoglu.
Ultrabroadband spectroscopy in photo-excited semiconductors [1]Masaya Nagai, Makoto Kuwata-Gonokami. Journal of Luminescence 100 (2002) Tomohide.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
UPM, DIAC. Open Course. March EMITTERS AND PDs 8.1 Emitter Basics 8.2 LEDs and Lasers 8.3 PD Basics 8.4 PD Parameters 8.5 Catalogs.
II-VI Semiconductor Materials, Devices, and Applications
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
Generation and control of high- order harmonics by the Interaction of infrared lasers with a thin Graphite layer Ashish K Gupta & Nimrod Moiseyev Technion-Israel.
Evolution of the orbital Peierls state with doping
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Tunable excitons in gated graphene systems
Dilute moment ferromagnetic semicinductors for spintronics
BEC-BCS cross-over in the exciton gas
Energy levels for a pair of antiferromagnetically coupled
Ferromagnetism.
ECE 340 Lecture 6 Intrinsic Material, Doping, Carrier Concentrations
The nature of light-matter interaction:
Presentation transcript:

Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P. Chen ( UCB ), L. J. Sham (UCSD), A.H. MacDonald (UT) Paramagnetic semiconductor (II,Mn)VI can become ferromagnetic when illuminated by coherent unpolarized light of frequency below the semiconductor band-gap.

EGEG EFEF Properties of the Diluted paramagnetic (II (1-x),Mn x )-VI (II (1-x),Mn x )-VI (Zn (1-x),Mn x )-Se (Zn (1-x),Mn x )-S (Cd (1-x),Mn x )-Te Mn-Mn interaction: only first neighbors. For x= coupled to nn (2%) 0.01 is free (80%) -  PARAMAGNET If doped with holes, FERROMAGNET at Tc<2 Kelvin

Laser features: Frequency below gap:  =E G -  L >0 No Photocarriers, no doping Intensity (  =d cv E 0 >0.1 meV) Polarization state: not relevant Coherently photo-induced ferromagnetism

This prediction is a logical consequence of: Experimentally established facts Theoretical concepts in agreement with experiments

=0 Exchange Interaction. Giant Spin Splitting Selection Rules LL j sd c Mn j pd c Mn B

Macroscopic Explanation of optical ferromagnetism Reactive optical energy, due to matter-laser interaction: U depends on : U(M) Ferromagnetism (  0) minimizes U (M) But entropy favours =0 Competition between reactive optical energy and entropy Electric Field of the Laser Real part of retarded Optical Response function

Entropic Penalty Paramagnetic Gain (Optical Energy) Functional of Carrier Density Matrix What is the density matrix of the laser driven (II,Mn)-VI semiconductor?

Density matrix: effect of the laser LL  Rotating Frame RWA E U (k) E L (k)  >  >(T 1 ) - 1 Coherent Occupation

No absorption= No real carriers  eff =  -|J|>0

Interaction“Bosonic Model” Laser MatterLinear response (*) h-Mn, e-MnMF VCA Electron-HoleAll orders e-e and h-hIrrelevant (linear response) Microscopic Theory: Relevant Interactions (*) Linear Response: Good if  >  OK, since  >|J|> and |J|>20 meV

Microscopic Theory: Bosonic Model

012 M G (10 -2 meV nm -3 ) (b) S (10 -2 meV nm -3 ) T=115 mK T=105 mK (a) M -1.2 U (10 -2 meV nm -3 ) T /T C M  =26 meV, T C =780 mK  =41 meV, T C =114 mK  =71 meV, T C =22 mK Results for (Zn 0.988,Mn ) S

Transition Temperature for (Zn 0.988,Mn ) S T c  2 T c  -3 Linear response fails there

Isothermal transitions for (Zn,Mn) S T=0.5 K Switching ferromagnetism on and off !!!

Materials and Lasers Important material properties: Robust Excitons Not much Mn (x=1%) (Zn,Mn)S, (Zn,Mn)Se (Zn,Mn)O ?? Laser properties: Tunable, around material band-gap Intense lasers T c <50 mK with cw laser Pulse duration longer than Switching time Switching time: interesting question !!!!

ORKKY vs coherently photo-induced FM j pd  j sd   The SAME than Bosonic Model (*) C. Piermarocchi, P. Chen, L.J. Sham and D. G. Steel PRL89, (2002)

Conclusions New way of making semiconductors ferromagnetic Ferromagnetism mediated by virtual carriers Originated by optical coherence Possible at T>1 Kelvin (with the right laser)

Phase Diagram Always absorbing T (  /J) Absorbing FM Coherent PM Always coherent PM FM T=1.5 K T=2.0 K

Interaction ‘BCS’ “Bosonic Model” Laser Matter All orders Linear response (*) h-Mn, e-Mn MF VCA Electron-Hole Pairing All orders Mn-Mn AF s-exc x replaced by x eff e-e and h-h Hartree-Fock Irrelevant (linear response) Microscopic Theory: Relevant Interactions * Linear Response: Good if  >  No absorption= No real carriers= Optical Coherence:  eff =  -|J|>0, where

Carrier mediated ferromagnetism Entropic Penalty Paramagnetic gain Functional of carrier density matrix What is the density matrix of the laser driven (II,Mn)-VI semiconductor?

BC AlSi NO PS GaGe InSn AsSe Sb II Zn Cd Hg IV V III VI Te EGEG EFEF II-VI Zn-Se Zn-S Cd-Te II BC AlSi NO PS GaGe InSn AsSe Sb IV V III VI Te Zn Cd Hg Mn EGEG EFEF Diluted paramagnetic semiconductor (II,Mn)-VI (Zn,Mn)-Se (Zn,Mn)-S (Cd,Mn)-Te Laser features: Frequency below gap:  =E G -  L >0 No Photocarriers Intense (  =d cv E 0 >0.1 meV) Non circularly polarized Coherently photo-induced ferromagnetism

II BC AlSi NO PS GaGe InSn AsSe Sb IV V III VI Te Zn Cd Hg Mn