Radio Diagnostics of Turbulence in the Interstellar & Intergalactic media J. M. Cordes, Cornell University URSI 20 August 2002.

Slides:



Advertisements
Similar presentations
Magnetic Field Puzzles From Our Own Backyard Jo-Anne Brown & Russ Taylor.
Advertisements

Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Observations of turbulence in the magneto-ionized ISM on subparsec scales Marijke Haverkorn.
The Extreme Dimension: Time-Variability and The Smallest ISM Scales Dan Stinebring Oberlin College.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
The Transient Radio Sky to be Revealed by the SKA Jim Cordes Cornell University AAS Meeting Washington, DC 8 January 2002.
A New Model for the Galactic Electron Density & its Fluctuations J. M. Cordes, Cornell University BU Milky Way Workshop 17 June.
PULSARS & TRANSIENT SOURCES Pushing the Envelope with SKA Jim Cordes, Cornell 10 July 2001  Neutron Star Science & Pulsar Surveys  Transient sources.
1 Origin of Variability of X-ray and γ-ray Spectra on Daily Scale Radovan Milinčić Astrophysics 711 May 3 rd 2005.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Microstructure in the Ionized ISM from radio scattering observations. Barney Rickett UC San Diego O’Dell Symposium Lake Geneva WI April 2007.
A New Pulsar Distance Scale and its Implications J. M. Cordes, Cornell University COSPAR 11 October 2002 New electron density.
A bright millisecond radio burst of Extragalactic origin Duncan Lorimer, Matthew Bailes, Maura McLaughlin, David Narkevic and Froney Crawford Science (in.
Galactic Magnetic Field Research with LOFAR Wolfgang Reich Max-Planck-Institut für Radioastronomie Bonn, Germany.
High-Energy & Radio Pulsar Population Modeling (++) Maura McLaughlin & Jim Cordes Jodrell Bank Observatory Cornell University December 11, 2001.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
PULSARS & TRANSIENT SOURCES Pushing the Envelope with SKA Jim Cordes, Cornell 28 Feb 2000  Frontiers of Neutron Star Science  Complete census of transient.
Random Media in Radio Astronomy Atmospherepath length ~ 6 Km Ionospherepath length ~100 Km Interstellar Plasma path length ~ pc (3 x Km)
Cosmic magnetism ( KSP of the SKA) understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
A short course in The Milky Way and the ISM Dr. Maura McLaughlin West Virginia University July Pulsar Search Collaboratory.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
The Galactic Center at Low Radio Frequencies Namir Kassim (NRL) Crystal Brogan (IfA) J. Lazio (NRL), Ted LaRosa (Kennesaw State), M. Nord (NRL/UNM), W.
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,
JinLin Han National Astronomical Observatories Chinese Academy of Sciences Beijing , China P. Demorest Grateful to cooperators Pulsar.
What do Scintillations tell us about the Ionized ISM ? Barney Rickett UC San Diego SINS Socorro May 2006.
Magnetic fields in the Galaxy via Faraday effect: Future prospects with ASKAP and the SKA Lisa Harvey-Smith Collaborators: Bryan CSIRO SKA Project ScientistGaensler.
Pulsar study using SKA Osamu KAMEYA ( NAOJ, Mizusawa VLBI Observatory )
The X-ray Universe Sarah Bank Presented July 22, 2004.
Aristeidis Noutsos University of Manchester. Pulsar Polarization Pulsar radiation is elliptically polarised with a high degree of linear polarization.
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Steven R. Spangler, Department of Physics and Astronomy
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Scintillation in Extragalactic Radio Sources Marco Bondi Istituto di Radioastronomia CNR Bologna, Italy.
Rotating Radio Transients Maura McLaughlin West Virginia University 12 September 2007.
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
Astronomy 404/CSI 769 Extragalactic Astronomy
Dongsu Ryu (CNU), Magnetism Team in Korea
Evidence for Anisotropy and Intermittency in the Turbulent Interstellar Plasma Bill Coles, University of California, San Diego 1. It had been thought that.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
OH maser sources in W49N: probing differential anisotropic scattering with Zeeman pairs desh Raman Research Institute, Bangalore + Miller Goss, Eduardo.
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
Parsec-scale Constraints on the ISM From the Millisecond Pulsars in Terzan5 Scott Ransom (NRAO Charlottesville) Fernando Camilo (Columbia) Paulo Freire.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Interstellar turbulent plasma spectrum from multi-frequency pulsar observations Smirnova T. V. Pushchino Radio Astronomy Observatory Astro Space Center.
Radio Sounding of the Near-Sun Plasma Using Polarized Pulsar Pulses I.V.Chashei, T.V.Smirnova, V.I.Shishov Pushchino Radio Astronomy Obsertvatory, Astrospace.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Measuring the Near-Nothingness of Interstellar Space with Radio Astronomy Steven R. Spangler University of Iowa.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
FIRST LIGHT A selection of future facilities relevant to the formation and evolution of galaxies Wavelength Sensitivity Spatial resolution.
Galactic Legacy Projects Naomi McClure-Griffiths Australia Telescope National Facility, CSIRO NRAO Legacy Projects Meeting, 17 May 2006.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Mapping the U.S. Scientific Future in VLBI ftp.aoc.nrao.edu/pub/VLBIfuture VLBI Future Committee: Shep.
Neutral Atomic Hydrogen Gas at Forbidden Velocities in the Galactic Plane Ji-hyun Kang NAIC Seoul National University Supervisor :Bon-Chul Koo 213 th AAS.
Is the Inner Radio Jet of BL Lac Precessing? R. L. Mutel University of Iowa Astrophysics Seminar 17 September 2003.
Cosmic Masers Chris Phillips CSIRO / ATNF. What is a Maser? Microwave Amplification by Stimulated Emission of Radiation Microwave version of a LASER Occur.
How can we measure turbulent microscales in the Interstellar Medium? Steven R. Spangler, University of Iowa.
1 ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) Netherlands Institute for Radio Astronomy Astronomy at ASTRON George Heald.
© 2017 Pearson Education, Inc.
A Turbulent Local Environment
Jim Cordes SINS Workshop
Steven R. Spangler University of Iowa
T.G.Arshakian MPI für Radioastronomie (Bonn)
Xinjiang Astronomical Observatory,CAS
GALACTIC ASTRONOMY (II): PULSARS
Presentation transcript:

Radio Diagnostics of Turbulence in the Interstellar & Intergalactic media J. M. Cordes, Cornell University URSI 20 August 2002 Probes of free electrons in the Galaxy and intergalactic medium (integrated measures) Why model n e &  n e (mean and fluctuations) in the Galaxy? Conceptual infrastructure –multiphase components of the ISM –Kolmogorov-like turbulence in ionized components the Galaxy? Modeling methods NE2001 = new release (July 2002) Applications & implications Preliminary results for the intergalactic medium

Why detailed modeling? Distance scale for neutron stars –Neutron star populations –Birth/death rates –Correlations with supernova remnant Turbulence in Galactic plasma Galactic magnetic fields (deconstructing Faraday rotation measures) Interpreting scintillations of sources at cosmological distances (AGNs, GRBs) Baseline model for exploring the intergalactic medium (dispersion & scattering in ISM, IGM)

Integrated Measures DM  ds n e Dispersion Measure EM  ds n e 2 Emission Measure RM  ds n e B  Rotation Measure SM  ds C n 2 Scattering Measure Spectrum = C n 2 q - , q = wavenumber (temporal spectrum not well constrained, relevant velocities ~ 10 km/s)  = 11/3 (Kolmogorov value) Scales ~ 1000 km to > pc

INTERSTELLAR DISPERSION DM =  0 D ds n e (s) Known for ~1200 pulsars DM ~ 2 to 1100 pc cm -3 Variable at ~10 -3 pc cm -3 Variations with d,l,b show obvious Galactic structure

Electron density irregularities exist on scales from ~ 100’s km to ~ pc as approximately a power-law spectrum (~ Kolmogorov) Pulsar velocities >> ISM, observer velocities 500 km/s average (100 to 1700 km/s) Extragalactic sources: ISM, observer velocities determine time scales of scintillation ~ 20 km/s Scattering is `strong’ for frequencies < 2 GHz

Interstellar Scattering Effects Used Angular broadening (seeing) Pulse broadening Diffractive interstellar scintillations (DISS)  d = / l d, l d = diffraction scale  d = scintillation bandwidth => Scattering Measure SM

Pulse broadening Pulse broadening vs DM Angular broadening Diffractive Scintillation Dynamic spectrum Visibility functions:

Pulse broadening (recent Arecibo results, R. Bhat et al)  ~ D  2 /2c  -4 Low DM pulsar, no broadening High DM pulsar with broadening SM = 0.92 (  / D) 5/6 11/3 = scattering measure

Estimated Wavenumber Spectrum for  n e Similar to Armstrong, Rickett & Spangler (1995) Slope ~ -11/3 Spectrum = C n 2 q -  SM = LOS integral of C n 2

DM vs Galactic latitude for different longitude bins SM vs latitude

Independent Pulsar Distances Parallaxes:Pulse timing Interferometry Associations:Supernova remnants Globular clusters HI Absorption:Galactic rotation

Very Long Baseline Array PSR B S. Chatterjee et al. (2001)  = 88.5  0.13 mas/yr  = 0.83  0.13 mas D = 1.2kpc V = 505 km/s

Brisken et al. 2001

NE2001 = New Model Cordes & Lazio 2002 astro-ph July Goal is to model n e (x) and C n 2 (x) in the Galaxy Software to the community (cf web site) Supercedes earlier model (Taylor & Cordes 1993, ApJ) Investigate application spinoffs: –Astronomical: scattering degradation of pulsar surveys Imaging surveys at low frequencies (LOFAR, SKA) SETI –Astrophysical: Physics of interstellar turbulence Connection to magnetic fluctuations & CR propagation (scales probed match CR gyroradii over wide energy range)

NE2001 = New Model Cordes & Lazio 2002 astro-ph July Input data {DM, EM, SM, [D L, D U ] = distance ranges} Prior input: –Galactic structure, HII regions, spiral-arm loci –Multi- constraints on local ISM (H , NaI, X-ray) Figures of merit: –N > = number of objects with DM > DM  (model) (minimize) –N hits = number of LOS where predicted = measured distance: d(model)  [D L, D U ] (maximize) –L = likelihood function for distances & scattering (maximize) Basic procedure: get distances right first, then get scattering (turbulence) parameters

NE2001 = New Model Cordes & Lazio 2002 astro-ph July x2 more lines of sight (D,DM,SM) [114 with D/DM, 471 with SM/D or DM] (excludes Parkes MB obj.) Local ISM component (new) (new VLBI parallaxes) [12 parameters] Thin & thick disk components (as in TC93) [8 parameters] Spiral arms (revised from TC93) [21 parameters] Galactic center component (new) [3 parameters] (+auxiliary VLA/VLBA data ; Lazio & Cordes 1998) Individual clumps/voids of enhanced dDM/dSM (new) [3 parameters x 20 LOS] Improved fitting method (iterative likelihood analysis) penalty if distance or SM is not predicted to within the errors

NE2001 Spiral Arms Electron density (log gray scale to enhance local ISM)

Local ISM components & results

Selected Applications Galactic turbulence anisotropy of fluctuations relation to  B and CR prop’n expect correlations of  -ray emission & scattering (GLAST needed) IGM in local group M33 giant pulses from Crab-like pulsars  DM,SM IGM on cosmological scales scattering/scint’n of AGNs by intervening galaxies, Ly  clouds, turbulence in cluster gas, HII regions at EOR GRB & IDV scintillations source sizes vs. t ambient medium IGM

Spatial fluctuations in n e recall dSM = C n 2 ds  F n e 2 ds  F n e dDM F = “fluctuation parameter” varies widely over Galaxy F  (  n e / n e ) 2 / f (outer scale) 2/3 (f = volume filling factor of ionized cloudlets) F varies by >100 between outer/inner Galaxy  change in ISM porosity due to change in star formation rate (?) outer scale ~ 0.01 pc in HII shells, GC > 1 pc in tenuous thin disk estimate:  n e / n e ~ 1

dSM  F n e dDM F  (  n e / n e ) 2 / f (outer scale) 2/3 small F large F Evidence for variations in turbulence properties between inner & outer Galaxy

Constraints on IGM Scattering (work in progress with J. Lazio) Apparent scattering excess over Galactic scattering for some high-z objects Strong upper bounds on source size ‘seen’ by ISM for IDV sources that display RISS at ~5 GHz Ionized IGM contains most of baryons in the Universe:  m   b ~ To satisfy observations, need scattering regions more numerous than L* galaxies.

Scattering of high z AGNs: Interstellar + Intergalactic ? -2.2 Lazio et al. (unpublished)

Summary / Future 1500 lines of sight Reasonably detailed modeling of the Galaxy Galaxy contains significant, unsampled structures on large and small scales VLBI astrometry  parallaxes on ~100 LOS in next few years Pulsar surveys will yield > 2000 pulsars (Arecibo MB) and ~ 10 4 pulsars (SKA)  definition of spiral arms complete sampling of significant HII regions Scattering may yield a unique probe of the ionized IGM

H  Images of Pulsar Bow Shocks Guitar Nebula (1600 km/s) MSP J (100 km/s)

Modeling the Galactic n e &  n e mean & fluctuations are modelled dSM = C n 2 ds  F n e 2 ds  F n e dDM F = “fluctuation parameter” varies widely over Galaxy  n e ~ C n (outer scale) 1/3 outer scale ~ 0.01 to > 1 pc estimate:  n e / n e ~ 1

Distance prediction on large scales