Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN ARIS2014 Tokyo Mass Asymmetric Fission of Iridium Nucleus Mass.

Slides:



Advertisements
Similar presentations
Viola and the Heavy Elements W. Loveland Oregon State University.
Advertisements

The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Reaction dynamics of light nuclei around the Coulomb barrier Alessia Di Pietro INFN-Laboratori Nazionali del Sud ARIS 2014Alessia Di Pietro,INFN-LNS.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Contributions to Nuclear Data by Radiochemistry Division, BARC
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
What have we learned last time? Q value Binding energy Semiempirical binding energy formula Stability.
Nuclear Reactions Fission and Fusion.
Nuclear Fission and Fusion. Nuclear Fission Nuclear Fission: The splitting of a massive nucleus into two smaller nuclei.
F. Minato A, S. Chiba A, K. Hagino B A. Japan Atomic Energy Agency B. Tohoku Univ. Fission barrier of uranium including Λ hyperon Nucl.Phys.A831, 150 (2009)Nucl.
Accelerator technique FYSN 430 Fall Syllabus Task: determine all possible parameters for a new accelerator project Known: Scope of physics done.
NECK FRAGMENTATION IN FISSION AND QUASIFISSION OF HEAVY AND SUPERHEAVY NUCLEI V.A. Rubchenya Department of Physics, University of Jyväskylä, Finland.
Study of proton-induced fission of actinides based on the measurements of fission fragment's characteristics by Multi-Wire Proportional gas Counters (MWPC)
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
The Long and the Short of it: Measuring picosecond half-lives… Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK
 What are the appropriate degrees of freedom for describing fission of heavy nuclei (171 ≤ A ≤ 330)?  Fission barrier heights for 5239 nuclides between.
C. Böckstiegel, S. Steinhäuser, H.-G. Clerc, A. Grewe, A. Heinz, M. de Jong, J. Müller, B. Voss Institut für Kernphysik, TU Darmstadt A. R. Junghans, A.
Multiplicity and Energy of Neutrons from 233U(nth,f) Fission Fragments
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
Status Report on Decay Spectroscopy and In-Source Laser Spectroscopy on Heavy Nuclei at ISOLDE Piet Van Duppen ISOLDE CERN, Switzerland IKS-K.U.Leuven,
The study of fission dynamics in fusion-fission reactions within a stochastic approach Theoretical model for description of fission process Results of.
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
Beatriz Jurado, Karl-Heinz Schmidt CENBG, Bordeaux, France Supported by EFNUDAT, ERINDA and NEA The GEneral Fission code (GEF) Motivation: Accurate and.
 -delayed fission of neutron-deficient Fr and At isotopes Lars Ghys 1,2 1 Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001.
Incomplete fusion studies near Coulomb barrier Pragya Das Indian Institute of Technology Bombay Powai, Mumbai , India.
Nuclear Level Density 1.What we know, what we do not know, and what we want to know 2.Experimental techniques to study level densities, what has been done.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ — ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Fusion-Fissions and Quasi-fissions of 32,34 S- and 48 Ti-induced Fissions at Near-barrier Energies H. Q. Zhang China Institute of Atomic Energy 中国原子能科学研究院.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Studies of Heavy Ion Reactions around Coulomb Barrier Part I. Competition between fusion-fission and quasi- fission in 32 S+ 184 W reaction Part II. Sub-barrier.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
Quasifission reactions in heavy ion collisions at low energies A.K. Nasirov 1, 2 1 Joint Institute for Nuclear Research, Dubna, Russia 2 Institute.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
In-beam  -ray spectroscopy of neutron-rich nuclei in the uranium region through the heavy-ion transfer reaction ISHII Tetsuro Japan Atomic Energy Agency.
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Fusion of light halo nuclei
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
Observation of new neutron-deficient multinucleon transfer reactions
SuperCHICO; a 4π heavy-ion detector C.Y. Wu and D. Cline An arsenal of auxiliary charged-particle detectors must be an integral component of GRETA in order.
Romualdo de Souza Correlations between neck fragments and Fission fragments For high energy/isotropically emitted fragments the folding angle decreases.
 -delayed fission of neutron-deficient Fr and At isotopes Lars Ghys 1,2 1 Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Studies of Heavy Ion Reactions around Coulomb Barrier Part I. Competition between fusion-fission and quasi- fission in 32 S+ 184 W reaction Part II. Sub-barrier.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Dynamical Model of Surrogate Reaction Y. Aritomo, S. Chiba, and K. Nishio Japan Atomic Energy Agency, Tokai, Japan 1. Introduction Surrogate reactions.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
Fission studies at HIE-ISOLDE with the TSR B. Jurado 1, P. Marini 1, F. Farget 2, M. Grieser 3, R. Reifarth 4, M. Aiche 1, A. Andreyev 5, L. Audouin 6,
2 nd SPES Workshop Probing the Island of Stability with SPES beams.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
Search for a nuclear kaon bound state K - pp at the J-PARC K1.8 beam line. Dep. of physics, Kyoto University / JAEA Y. Ichikawa for E27 Collaboration Korea-Japan.
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
Study of Heavy-ion Induced Fission for Heavy Element Synthesis
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Russian Research Center “ Kurchatov Institute”
Direct Measurement of the 8Li + d reactions of astrophysical interest
New Transuranium Isotopes in Multinucleon Transfer Reactions
Presentation transcript:

Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN ARIS2014 Tokyo Mass Asymmetric Fission of Iridium Nucleus Mass Asymmetric Fission of Nucleus Produced in 7 Li W

① K. Nishio, K. Hirose, I. Nishinaka, H. Makii, R. Orlandi, R. Léguillon, J. Smallcombe, S. Mitsuoka, T. Ishii, H. Ikezoe ② A. Andreyev ③ N. Tamura, S. Goto ④ T. Ohtsuki ⑤ I.Tsekhanovich ⑥ P. Möller ① ② ③ ④ ⑤ ⑥

- particle induced x - e.m. –induced E*~11 MeV 187 Ir 196 Au Z= Hg N/Z=1.25 Region of our interest I: beta- delayed fission of A~ N/Z~ : Tl,Bi, At, Fr ISOLDE(CERN) Properties for Low-Energy Fission A. Andreyev et al., Phys. Rev. Lett.105, (2010).

Calculated Fission Fragment Yield 180 Hg Calculated by P. M ö ller (LANL) and J. Randrup (LBNL) P. Möller, 10 th ASRC International Workshop, “ Nuclear Fission and Structure of Exotic Nuclei ”, 2013.March, Tokai, Japan 193 Ir 7 Li W  193 Ir*

JAEA at Tokai and Tandem Facility 20 MV Tandem accelerator (20UR) Tokai Campus, JAEA Tokyo Tandem facility J-PARC

Time difference signal of FFs in 7 Li W 186 W MWPC2 MWPC1 Fragment 2 Fragment 1 7 Li Beam Time difference (ch) Counts E c.m. = 65.5MeV 40.0 MeV 30.0 MeV 44 o

Fragment Mass Distributions in 7 Li W 31.1 MeV 68.0 MeV 41.5 MeV E lab Fragment Mass (u) 110 Ru 83 As Events (u) Fusion reaction is assumed 7 Li W  193 Ir* N = 50 N = 66

Folding Angle between Fission Fragments θ fold = θ 1 + θ 2 (deg) Complete Fusion 7 Li W θ fold =169 o E lab = 31.1 MeV Beam FF 1FF 2 θ1θ1 Recoiled Fissioning Nucleus θ2θ2 Counts

Analysis assuming fusion-fission Viola Formula from Phys. Rev. C 31, 1550 (1985) 7 Li Os  199 Au* Fragment Mass (u) TKE (MeV) Folding Angle (deg.) =134 MeV θ fold, =167.9 o TKE (MeV) 7 Li W  193 Ir* θ fold =167.5 o Fragment Mass (u) =129 MeV Folding Angle (deg.) E beam = 41.5 MeVZ=118

7 Li W, 192 Os 31.1 MeV 41.5 MeV E Beam = 64.0 MeV  fold (deg)  (ns) Li W 7 Li Os σ fiss = 67 μ b 110 μ b 14 μ b 2.1 μ b 0.8 μ b  (ns)

192 Os 191 Os Break-up Fusion 187 Re 188 Re 189 Re 188 Os 189 Os 190 Os 185 W 186 Re 187 Os 189 Ir 190 Ir 191 Ir 188 Ir 192 Ir 193 Ir 184 W 185 Re 186 Os 187 Ir 186 W 186 W( 7 Li, α) 189 Re * 186 W( 7 Li, t) 190 Os* 189 Re 193 Ir p Os Counts Fragment Mass (u) 190 Os 7 Li  3 H + 4 He (Q= MeV)

Break-up Fusion and Fission Fragment 1 Fragment W 7 Li 4 He 3 H W  189 Re * 4 He 3H3H 4 He W  190 Os * 3H3H CNV Coul E beam,thres ( 7 Li) 4 He W 190 Os*20.3 MeV ̴ 36 MeV 3 H W 189 Re*10.3 MeV ̴ 24 MeV

Fission Barrier Height for 189 Re and 190 Os P. M ö ller, 16 th ASRC International Workshop, “ Nuclear Fission and Decay of Exotic Nuclei ”, 2014.March, Tokai, Japan 189 Re* or 190 Os* should have excitation energy larger than 25 MeV 189 Re, 190 Os Fission Barrier is 25 MeV

 (ns) Folding Angle at E* = 25 MeV of Fissioning Nucleus 7 Li W = 193 Ir* 31.1 MeV 41.5 MeV E lab E* max = 36 MeV  fold (deg) 64.0 MeV 186 W( 7 Li, α ) 189 Re*, θ α = 45 o 186 W( 7 Li, t ) 190 Os*, θ t = 45 o 186 W( 7 Li, α ) 189 Re*, θ α = 55 o 186 W( 7 Li, α ) 189 Re*, θ α = 25 o 186 W( 7 Li, t ) 190 Os*, θt = 45 o

ΔE E Target 7 Li 186 W θ LAB ΔE-E t, α 7 Li Beam Setup for Break-up Fusion Induced Fission 189 Re*… MWPC1 MWPC2

Summary Mass-asymmetric fission was observed for nucleus produced in 7 Li W. The fissionig nucleus could be populated by break-up fusion. Coincidence experiment between particle and both fission fragments is planned.

Properties for Low-Energy Fission 180 Hg  A. Andreyev et al., Phys. Rev. Lett.105, (2010).

 (ns) Folding Angle Distribution at E* = 25MeV 186 W( 7 Li, α ) 189 Re*, θ α = 25 o, W( 7 Li, α ) 189 Re*, θ α = 45 o, W( 7 Li, α ) 189 Re*, θ α = 55 o, W(7Li, t ) 190 Os*, θt = 45 o, W( 7 Li, t ) 190 Os*, θ t = 45 o,170.0 o 186 W( 7 Li, t ) 190 Os*, θ t = 45 o, Li W = 193 Ir* 31.1 MeV 41.5 MeV E lab E* max = 36 MeV E* max = 26 MeV  fold (deg) 64.0 MeV

Summary

21

22

23

Multi-nucleon Transfer Induced Fission 18 O Th E sum (MeV) Coincidence between particle and fission fragments O F N C B Be 15 N 232 Th( 18 O, 15 N) 235 Pa*  Transfer of 3 H

232 Th( 18 O, 15 N) 235 Pa* → Fission Fragment Mass Distributions for 3 H Transfer Fragment mass yield (u) Excitation energy (MeV) Counts

232 Th( 18 O, 18 O) 232 Th* Fragment Mass Distributions for 232 Th * 26 Fragment mass yield (u) Excitation energy (MeV)

Multi-nucleoon Transfer Induced Fission 18 O Th E sum (MeV) Coincidence between particle and fission fragments O F N C B Be

New Region for Mass Asymmetric Fission A.Andreyev et al., Phys. Rev. Lett.105, (2010). 180 Hg 28 T. Ichikawa et al., Phys. Rev.C.86, (2012).

Theoretical Mass Yield 193 Ir 189 Ir

Fission Q -value Fragment Mass (u) 2010 Q-value for Fission (MeV) Present 258 Fm 238 U 193 Ir 160 Gd Saddle Point Shape 1980 Large Fission Probability Small Fission Probability