Rigid strange lattices in Proto-Neutron Stars Juergen J. Zach Ohio State/UCSD 13 May, 2002 INT Nucleosynthesis workshop.

Slides:



Advertisements
Similar presentations
Envelopes and thermal radiation of neutron stars with strong magnetic fields Alexander Y. Potekhin 1 in collaboration with D.G.Yakovlev, 1 A.D.Kaminker,
Advertisements

Biological fluid mechanics at the micro‐ and nanoscale Lecture 7: Atomistic Modelling Classical Molecular Dynamics Simulations of Driven Systems Anne Tanguy.
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Formation of quark stars J.E. Horvath IAG – USP São Paulo, Brazil.
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
Hard Photon Production in a Chemically Equilibrating QGP at Finite Baryon Density Zejun He Zejun He Shanghai Institute of Applied Physics Research Chinese.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Upper limits on the effect of pasta on potential neutron star observables William Newton Michael Gearheart, Josh Hooker, Bao-An Li.
Gravitational waves and neutron star matter (except oscillations) Ben Owen August 6, ECT* Trento arXiv:
Strangeness barrierhttp://vega.bac.pku.edu.cn/rxxu R. X. Xu Renxin Xu School of Physics, Peking University ( ) 1 st bilateral meeting on “Quark and Compact.
Magnetized Strange- Quark-Matter at Finite Temperature July 18, 2012 Latin American Workshop on High-Energy-Physics: Particles and Strings MSc. Ernesto.
LIGO- G Z August 18, 2004LIGO Scientific Collaboration 1 When do the pulsar upper limits get interesting? Ben Owen with Ian Jones.
The role of neutrinos in the evolution and dynamics of neutron stars José A. Pons University of Alicante (SPAIN)  Transparent and opaque regimes.  NS.
Spin polarization phenomena in dense nuclear matter Alexander Isayev Kharkov Institute of Physics and Technology Ukraine.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Xia Zhou & Xiao-ping Zheng The deconfinement phase transition in the interior of neutron stars Huazhong Normal University May 21, 2009 CSQCD Ⅱ.
The high density QCD phase transition in compact stars Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany Excited QCD 2010, Tatra National.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
A Crust with Nuggets Sanjay Reddy Los Alamos National Laboratory Jaikumar, Reddy & Steiner, PRL 96, (2006) SQM, UCLA, March (2006)
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
Guillermina Ramirez San Juan
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
Ultracold Atoms Meet Quantum Gravity Boris V. Svistunov, University of Massachusetts Amherst, PHY Little is known precisely about overdamped dynamics.
Strange and Charm Probes of Hadronization of Bulk Matter at RHIC International Symposium on Multi-Particle Dynamics Aug 9-15, 2005 Huan Zhong Huang University.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
Properties of nuclear matter in supenova explosions Igor Mishustin Frankfurt Institute for Advanced Studies Johann Wolfgang Goethe University Frankfurt.
Gravitational waves from neutron star instabilities: What do we actually know? Nils Andersson Department of Mathematics University of Southampton IAP Paris.
Quantum calculation of vortices in the inner crust of neutron stars R.A. Broglia, E. Vigezzi Milano University and INFN F. Barranco University of Seville.
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
Complex Plasmas as a Model for the Quark-Gluon-Plasma Liquid
THERMAL EVOLUION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Catania, October 2012,
COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,
Моделирование магниторотационных процессов в коллапсирующих сверхновых и развитие Магнито-Дифференциально- Ротационной неустойчивости Сергей Моисеенко,
Lattice Gauge Theory for the Quark-Gluon Plasma Sourendu Gupta TIFR.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
09/15/10Waye State University1 Elliptic Flow of Inclusive Photon Ahmed M. Hamed Midwest Critical Mass University of Toledo, Ohio October, 2005 Wayne.
Compact Stars as Sources of Gravitational Waves Y. Kojima (Hiroshima Univ.) 小嶌康史 ( 広島大学理学研究科 ) 第 3 回 TAMA シンポジュウム(柏) 2003 年 2 月 6 - 7 日.
Neutron star core-quakes caused by a transition to the mixed-phase EOS mixed-phase linear response theory stellar models M. Bejger, collaboration with.
Color glass condensate in dense quark matter and off-diagonal long range order of gluons A. Iwazaki (Nishogakusha-u) Success of an effective theory of.
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama.
带强磁场奇异星的 中微子发射率 刘学文 指导老师:郑小平 华中师范大学物理科学与技术学院. Pulsar In 1967 at Cambridge University, Jocelyn Bell observed a strange radio pulse that had a regular period.
Elliptic flow and shear viscosity in a parton cascade approach G. Ferini INFN-LNS, Catania P. Castorina, M. Colonna, M. Di Toro, V. Greco.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
【 May. 20th CS QCD II 】 N. Yasutake (NAOJ) 安武 伸俊 N. Yasutake (NAOJ) 安武 伸俊 The pasta structure of quark-hadron phase transition and the effects on.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Ladek Zdroj, February 2008, Neutrino emission in nonsuperfluid matter The effects of superfluidity COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical.
Symmetry energy in the neutron star equation of state and astrophysical observations David E. Álvarez C. Sept 2013 S. Kubis, D. Blaschke and T. Klaehn.
Neutron Stars, Supernova & Phases of Dense Quark Matter Seeking observable signatures for dense quark matter in astrophysics Sanjay Reddy Theoretical Division,
Lattice Gauge Theory for the Quark-Gluon Plasma Sourendu Gupta TIFR.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Waseda univ. Yamada lab. D1 Chinami Kato
Active lines of development in microscopic studies of
EOS discussion.
Stellar core collapse with QCD phase transition
W.G.Newton1, J.R.Stone1,2 1University of Oxford, UK
The quark-deconfinement model of Gamma-Ray-Bursts
Theoretical Astrophysics Group
Equation of State for Hadron-Quark Mixed Phase and Stellar Collapse
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
Presentation transcript:

Rigid strange lattices in Proto-Neutron Stars Juergen J. Zach Ohio State/UCSD 13 May, 2002 INT Nucleosynthesis workshop

Physical Environment: Core Collapse Supernovae Protoneutron star: core at late stages of Kelvin-Helmholtz cooling phase Times: t  3s after bounce  mostly deleptonized Densities:  C ~2-5  nuclear Temperature: T~10MeV  conditions for which many studies (e.g. Heiselberg et al. 2000) indicate a 1st-order phase transition to matter with macroscopic strangeness

 Deconfined quark matter (Pons et al. 2001), formation of strange quarks through weak reactions, e.g.: Forms of macroscopically strange matter  (  -,  - -, … ) Hyperons (Balberg et al. 1999)  Bose-Einstein condensate of mesons (K - ) (Pons et al. 2000)

Formation of a Phase Transition Lattice  Gibbs conditions in mixed phase determine strange phase fraction  :  B,s =  B,N ;  e,s =  e,N ; P s = P N ; T s = T N ; global charge neutrality (Glendenning 1992).  Geometrical structure determined by minimum of E=E coulomb +E surface +E curvature +… (Heiselberg et al. 1993, Glendenning 2001)  Spherical droplets of minority phase at  =0/1.  Rods, platelets at  ~0.5.

Liquid Lattice – Upper Layers

Crystallized Lattice – Upper Layers

Properties of the Phase Transition Lattice at Finite Temperature  Solution of the whole lattice: equivalent to general problem of solid state physics from first principles  intractable  OCP-model for the limit of small droplet sizes: - structure-less point charges - uniform charge distribution (no screening)

Solving the OCP Model  Displacement:  Degeneracy parameter:  Lindemann parameter  : Monte Carlo simulations (Stringfellow 1990, Ceperley 1980):  intermediate range between classical and quantum limits  Solid-liquid coexistence curve:

Melting Curves – Charge Dependence  M =0.4fm -3 ; R=3fm;  protoneutronstar cools through melting temperature during Kelvin-Helmholtz cooling phase

Melting Curves – Size Dependence  C =0.4fm -3 ; R=3fm;  no crystallization below R droplet ~ 1fm  lattice crystallizes first for deeper layers

Limits of OCP Model Deformation (“wobble”) modes:  freeze-out around lattice crystallization for small droplets Screening effects; Debye lengths (Heiselberg et al. 1993, Norsen et al. 2001):

Mechanical Stability of the Crystallized Lattice Shear constant of bcc - Coulomb lattice: Obtain W l with Ewald’s method (Ewald 1921). Critical shear stress:

Lattice Crystallization and Hydrodynamics Lepton number gradient dominant driving force of convection (Epstein 1979) at late stages of PNS evolution:  convection and differential rotation can prevent crystallization  convection can break up lattice formed during transient quiet period Differential rotation (Goussard et al. 1998); min. period ~1ms

Possible effects on neutrino transport ~3-20sec. post-bounce? Reddy et al. 2000: coherent scattering off strange droplets  increase in -opacity of mixed phase by 1-2 orders of magnitude  Knee in -luminosity after 1 st -order phase transition?  Rearrangements of solid lattice during PNS evolution  irregularities in -emission?  Localized fractures of lattice by convection  asymmetric -transport?

Work in progress - other observational signatures? Gravity wave signature of anisotropic neutrino transport pattern detectable for Galactic SN. “Settling” of lattice defects might cause some pulsar glitches. Interaction with magnetic field in PNS? Phase transition lattice might be responsible for non-spherical features in core collapse supernovae?

Conclusions: Crystallization of the lattice formed during a first order phase transition in protoneutronstars possible for temperatures T~1-10MeV. Deformation modes of the lattice droplets freeze out around the same temperature. Critical shear stress ~10 -3 MeV/fm 3  complex interaction between lattice crystallization and hydrodynamics (convection and differential rotation). Solid lattice could lead to spatial anisotropies and temporal irregularities in -transport.

References: (Heiselberg et al. 2000): H. Heiselberg, M. Hjorth-Jensen, Phys. Rep. 328 (2000) (Glendenning 1992): N.K. Glendenning, Phys. Rev. D 46 (1992) (Heiselberg et al. 1993): H. Heiselberg, C.J. Pethick, E.F. Staubo, Phys. Rev. Lett. 70 (1993) (Glendenning 2001): N.K. Glendenning, Phys. Rep. 342 (2001) (Pons et al. 2001): J.A. Pons, A.W. Steiner, M. Prakash, J.M. Lattimer, Phys. Rev. Lett. 86 (2001) (Pons et al. 2000): J.A. Pons, S. Reddy, P.J. Ellis, M. Prakash, J.M. Lattimer, Phys. Rev. C 62 (2000) (Balberg et al. 1999): S. Balberg, I. Lichtenstadt, G.B. Cook, ApJS. 121 (1999) (Chabrier 1993): G. Chabrier, ApJ. 414 (1993) (Stringfellow 1990): G.S. Stringfellow, H.E. DeWitt, Phys. Rev. A 41 (1990) (Ceperley 1980): D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45 (1980) 566. (Norsen et al. 2001): T. Norsen, S. Reddy, Phys. Rev. C 63 (2001) (Ewald 1921): P.P. Ewald, Ann. Phys. 64 (1921) (Epstein 1979): R.I. Epstein, Mon. Not. R. Astr. Soc. 188 (1979) (Goussard et al. 1998): J.O. Goussard, P. Haensel, J.L. Zdunik, Astron. Astrophys. 330 (1997) (Reddy et al. 2000): S. Reddy, G. Bertsch, M. Prakash, Phys. Lett. B 475 (2000) 1-8.