Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA 90095-1567, Global.

Slides:



Advertisements
Similar presentations
The goal… We provide a spatial-temporal distribution of large earthquakes (M 5.5+) occurred in Italy in the last 4 centuries We provide a NONPARAMETRIC.
Advertisements

Contributions of Prof. Tokuji Utsu to Statistical Seismology and Recent Developments Ogata, Yosihiko The Institute of Statistical Mathematics , Tokyo and.
A magnitude 7.1 struck early Saturday off Japan's east coast. The quake hit at 2:10 a.m. Tokyo time about 170 miles from Fukushima, and it was felt in.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , EARTHQUAKE.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , EARTHQUAKE PREDICTABILITY.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Testing.
Earthquake spatial distribution: the correlation dimension (AGU2006 Fall, NG43B-1158) Yan Y. Kagan Department of Earth and Space Sciences, University of.
Yan Y. Kagan, David D. Jackson Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , GLOBAL EARTHQUAKE.
Estimating and testing earthquake magnitude limits David D. Jackson, UCLA Yan Kagan, UCLA Peter Bird, UCLA Danijel Schorlemmer, U. Potsdam Jeremy Zechar,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Statistical.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Statistical.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Full.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Statistical.
Epidemic Type Earthquake Sequence (ETES) model  Seismicity rate = "background" + "aftershocks":  Magnitude distribution: uniform G.R. law with b=1 (Fig.
Earthquake predictability measurement: information score and error diagram Yan Y. Kagan Department of Earth and Space Sciences, University of California.
Yan Y. Kagan, David D. Jackson Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan, David D. Jackson Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Forecast.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Rules of the Western.
New Earthquake Catalogs For Southern California And Their Use In Earthquake Forecasting Yan Y. Kagan, David D. Jackson and Yufang Rong, University of California,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Statistical.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Earthquake.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , STATISTICAL.
A. Ghosh, EAS, Georgia Tech Distribution of b-value in the Middle America Trench, near Nicoya Peninsula, Costa Rica Abhijit Ghosh A. V. Newman, A. M. Thomas,
Stability and accuracy of the EM methodology In general, the EM methodology yields results which are extremely close to the parameter estimates of a direct.
FULL EARTH HIGH-RESOLUTION EARTHQUAKE FORECASTS Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
An Introduction to Seismic Eruption software and an associated classroom activity Michael Hubenthal, IRIS Educational Specialist.
The basic results and prospects of MEE algorithm for the medium-term forecast of earthquakes Alexey Zavyalov Schmidt Institute of Physics of the Earth.
Research opportunities using IRIS and other seismic data resources John Taber, Incorporated Research Institutions for Seismology Michael Wysession, Washington.
Using IRIS and other seismic data resources in the classroom John Taber, Incorporated Research Institutions for Seismology.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Tohoku.
Characteristic earthquake model, 1884 – 2011, R.I.P. Y.Y. Kagan, D.D. Jackson, and R.J. Geller ESS/UCLA and University of Tokyo Abstract Unfortunately,
Random stress and Omori's law Yan Y. Kagan Department of Earth and Space Sciences, University of California Los Angeles Abstract We consider two statistical.
Yan Y. Kagan & David D. Jackson Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
TOHOKU EARTHQUAKE: A SURPRISE? Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los Angeles Abstract.
California Project Seismicity in the oil and gas fields Tayeb A. Tafti University of Southern California July 2, 2013.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Evaluation.
GLOBAL EARTHQUAKE FORECASTS Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los Angeles Abstract We.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Earthquake size distribution: power-law with exponent ? Yan Y. Kagan Department of Earth and Space Sciences, University of California Los Angeles Abstract.
California Earthquake Rupture Model Satisfying Accepted Scaling Laws (SCEC 2010, 1-129) David Jackson, Yan Kagan and Qi Wang Department of Earth and Space.
Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in 7 tectonic.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , SHORT-TERM PROPERTIES.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , STATISTICAL SEISMOLOGY–
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
SHORT- AND LONG-TERM EARTHQUAKE FORECASTS FOR CALIFORNIA AND NEVADA Kagan, Y. Y. and D. D. Jackson Department of Earth and Space Sciences, University of.
GNS Science Operational Earthquake Forecasting in New Zealand: Advances and Challenges Annemarie Christophersen, David A. Rhoades, David Harte & Matt C.
Random stress and Omori's law Yan Y. Kagan Department of Earth and Space Sciences, University of California Los Angeles Abstract We consider two statistical.
A new prior distribution of a Bayesian forecast model for small repeating earthquakes in the subduction zone along the Japan Trench Masami Okada (MRI,
Metrics, Bayes, and BOGSAT: Recognizing and Assessing Uncertainties in Earthquake Hazard Maps Seth Stein 1, Edward M. Brooks 1, Bruce D. Spencer 2 1 Department.
Jiancang Zhuang Inst. Statist. Math. Detecting spatial variations of earthquake clustering parameters via maximum weighted likelihood.
Abstract The space-time epidemic-type aftershock sequence (ETAS) model is a stochastic process in which seismicity is classified into background and clustering.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
T HE RELIABILITY OF A NATURAL HAZARD SYSTEM M. Khaleghy Rad S.G. Evans Natural Disaster Systems Research Group, Department of Earth and Environmental Sciences,
Statistical earthquake forecasts
2010/11/01 Workshop on "Earthquake Forecast Systems Based on Seismicity of Japan: Toward Constructing Base-line Models of Earthquake Forecasting" Seismicity.
Global smoothed seismicity models and test results
Yan Y. Kagan Dept. Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA , NEGATIVE.
Understanding Earth Chapter 13: EARTHQUAKES Grotzinger • Jordan
Maximum Earthquake Size for Subduction Zones
Chile Earthquake February 27, 2010
Tohoku earthquake: A surprise?
R. Console, M. Murru, F. Catalli
K. Z. Nanjo (ERI, Univ. Tokyo)
HAZARDS Seismic hazards
Presentation transcript:

Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Global high-resolution earthquake forecasts and their testing

Outline of the Talk Quantitative earthquake prediction -- early stages and their later developments. Current global earthquake forecasts and their testing. Maximum size estimates for subduction zones relevant for Tohoku (Japan) M9 earthquake as well as long- and short-term seismicity rate forecasts in its region.

Forecast: Long-term earthquake rate based on PDE catalog present. 0.1 x 0.1 degree, Magnitude M>=5.0

Forecast: Short-term earthquake rate based on PDE catalog present. 0.1 x 0.1 degree, Magnitude M>=5.0

Power-law kernel Fisher distribution kernel

Adaptive kernel smoothing improves our forecast in seismically quiet areas.

Tohoku M9 earthquake and tsunami

Flinn-Engdahl seismic regions: Why select them? Regions were defined before GCMT catalog started (no selection bias), and easier to replicate our results

DETERMINATION OF MAXIMUM MAGNITUDE Seismic moment rate depends on 3 variables -- 1.The number of earthquakes in a region (N), 2.The beta-value (b-value) of G-R relation, 3.The value of maximum (corner) magnitude. Tectonic moment rate depends on 3 variables Width of seismogenic zone (W – km), 2. Seismic efficiency coefficient ( %), 3. Value of shear modulus (30GPa -- 49GPa)

Kagan, Seismic moment-frequency relation for shallow earthquakes: Regional comparison, J. Geophys. Res., 102, (1997).

END Thank you

Since 1977 we have developed statistical short- and long-term earthquake forecasts to predict earthquake rate per unit area, time, and magnitude. The forecasts are based on smoothed maps of past seismicity and assume spatial and temporal clustering. Our recent program forecasts earthquakes on a 0.1 degree grid for a global region 90N--90S latitude. We use the PDE catalog that reports many smaller quakes (M>=5.0). For the long-term forecast we test two types of smoothing kernels based on power-law and on the spherical Fisher distribution. We employ adaptive kernel smoothing which improves our forecast in seismically quiet areas. Our forecasts can be tested within a relatively short time period since smaller events occur with greater frequency. The forecast efficiency can be measured by likelihood scores expressed as the average probability gains per earthquake compared to spatially or temporally uniform Poisson distribution. The other method uses the error diagram to display the forecasted point density and the point events. Abstract

As an illustration, we display several short-term forecasts, made before and after the M9.1 Japanese Tohoku earthquake of 2011/3/11. A M7.5 foreshock occurred two days before the mainshock. Due to this, the short-term rate immediately preceding the Tohoku event was about 100 times higher than the long-term rates. After the Tohoku earthquake the rate increased by a factor of One month later, the rate remained about 100 times higher than the long-term rate. The major issue for the long-term seismicity forecast in the Tohoku area was the maximum earthquake size. Whereas 2009 Japan's seismic hazard map predicted the maximum magnitude of 8.0 or less, the estimate based on seismic moment conservation principle anticipated the maximum magnitude of the order M Is the focal area of the Tohoku earthquake "destressed", making the probability of a new large event lower in this area, though it can increase in nearby zones? Our results suggest that this may not be the case. We find that earthquakes as large as M>=7.5 often occur in practically the same area as previous large events. Abstract (cont.)