Algebra1 Exponential Functions

Slides:



Advertisements
Similar presentations
Warm Up Simplify each expression. Round to the nearest whole number if necessary (3) –5(2)5 – – (0.5)2.
Advertisements

Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Grade 8 Algebra I Identifying Quadratic Functions
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
Identifying Quadratic Functions
Exponential Functions
Algebra1 Square-Root Functions
Algebra 1 Linear, Quadratic, and Exponential Models
Exponential Functions
Warm Up 1. Solve 2x – 3y = 12 for y. 2. Graph
Choose functions using sets of ordered pairs EXAMPLE 1 Use a graph to tell whether the ordered pairs represent a linear function, an exponential function,
Algebra1 Graphing Functions
Identifying Linear Functions
Identifying Linear Functions
Algebra1 Review of Exponential and Radical Functions
Holt McDougal Algebra 1 27 Exponential Functions Warm Up Simplify each expression. Round to the nearest whole number if necessary (3)
CONFIDENTIAL 1 Algebra1 Identifying Linear Functions.
Preview Warm Up California Standards Lesson Presentation.
Warm Up Lesson Presentation Lesson Quiz Class work/Homework.
Holt Algebra Identifying Quadratic Functions 9-1 Identifying Quadratic Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt Algebra Identifying Linear Functions Warm Up 1. Solve 2x – 3y = 12 for y. 2. Graph for D: {–10, –5, 0, 5, 10}.
Holt Algebra Identifying Linear Functions 5-1 Identifying Linear Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt McDougal Algebra Exponential Functions 9-2 Exponential Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
9-1 Quadratic Equations and Functions Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Identifying Quadratic Functions. The function y = x 2 is shown in the graph. Notice that the graph is not linear. This function is a quadratic function.
9-1 Quadratic Equations and Functions Solutions of the equation y = x 2 are shown in the graph. Notice that the graph is not linear. The equation y = x.
Identifying Linear Functions
Linear, Quadratic, and Exponential Models 11-4
Algebra1 Direct Variation
Holt Algebra Exponential Functions Evaluate exponential functions. Identify and graph exponential functions. Objectives Exponential function Vocabulary.
Holt Algebra Identifying Linear Functions 5-1 Identifying Linear Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
4-1 Identifying Linear Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Algebra 1.
Holt Algebra Exponential Functions Warm Up Simplify each expression. Round to the nearest whole number if necessary (3) 3 4.
Holt McDougal Algebra Identifying Linear Functions Identify linear functions and linear equations. Graph linear functions that represent real- world.
Grade 8 Algebra I Characteristics of Quadratic Functions
Holt McDougal Algebra Exponential Functions, Growth, and Decay Warm Up Evaluate (1.08) (0.95) (1 – 0.02) ( )
Holt Algebra Linear, Quadratic, and Exponential Models Warm Up Find the slope and y-intercept of the line that passes through (4, 20) and (20, 24).
Topic 10 : Exponential and Logarithmic Functions Exponential Models: Geometric sequences and series.
1 The graph represents a function because each domain value (x-value) is paired with exactly one range value (y-value). Notice that the graph is a straight.
Warm Up 1. Find the slope and y-intercept of the line that passes through (4, 20) and (20, 24). The population of a town is decreasing at a rate of 1.8%
LINEAR VS. EXPONENTIAL FUNCTIONS & INTERSECTIONS OF GRAPHS.
11-7 Exponential Functions Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Linear, Quadratic, and Exponential Models
Exponential Functions
Linear, Quadratic, and Exponential Models 9-4
Linear, Quadratic, and Exponential Models 11-4
Welcome! Grab a set of interactive notes
Exponential Functions
Exponential Functions
Linear, Quadratic, and Exponential Models
Exponential Functions
Warm Up Simplify each expression. Round to the nearest whole number if necessary (3) –5(2)5 – – (0.5)2.
Exponential Functions
Exponential Functions Quadratic Functions Linear Functions
Linear, Quadratic, and Exponential Models 11-4
2. Write an exponential decay function to model this situation.
Objectives Identify linear functions and linear equations.
Objectives Identify linear functions and linear equations.
Exponential Functions
EXPONENTIAL FUNCTIONS
Exponential Functions
Exponential Functions
Linear, Quadratic, and Exponential Models
Exponential Functions
Objectives Evaluate exponential functions.
Warm Up Simplify each expression. Round to the nearest whole number if necessary (3) –5(2)5 – – (0.5)2.
Exponential Functions
Linear, Quadratic, and Exponential Models 11-4
Linear, Quadratic, and Exponential Models
Presentation transcript:

Algebra1 Exponential Functions CONFIDENTIAL

Warm Up 1) What is the 12th term of the sequence 4, 12, 36, 108, …? 2) The average of Roger’s three test scores must be at least 90 to earn an A in his science class. Roger has scored 88 and 89 on his first two tests. Write and solve an inequality to find what he must score on the third test to earn an A. CONFIDENTIAL

Exponential Functions The table and the graph show an insect population that increases over time. CONFIDENTIAL

Exponential Functions A function rule that describes the pattern above is f(x) = 2 (3)x . This type of function, in which the independent variable appears in an exponent, is an exponential function . Notice that 2 is the starting population and 3 is the amount by which the population is multiplied each day. An exponential function has the form f (x) = abx , where a " 0, b ≠ 1, and b > 0. CONFIDENTIAL

Evaluating an Exponential Function A) The function f (x) = 2(3)x models an insect population after x days. What will the population be on the 5th day? f (x) = 2(3)x Write the function. f (5) = 2(3)5 Substitute 5 for x. = 2 (243) = 486 Evaluate 35 . Multiply. There will be 486 insects on the 5th day. CONFIDENTIAL

There will be about 1441 prairie dogs in 8 years. B) The function f (x) = 1500 (0.995)x, where x is the time in years, models a prairie dog population. How many prairie dogs will there be in 8 years? f (x) = 1500 (0.995)x Write the function. f (8) = 1500 (0.995)8 Substitute 8 for x. ≈ 1441 Use a calculator. Round to the nearest whole number. There will be about 1441 prairie dogs in 8 years. CONFIDENTIAL

Now you try! 1) The function f (x) = 8 (0.75)x models the width of a photograph in inches after it has been reduced by 25% x times. What is the width of the photograph after it has been reduced 3 times? CONFIDENTIAL

Remember that linear functions have constant first differences and quadratic functions have constant second differences. Exponential functions do not have constant differences, but they do have constant ratios. As the x-values increase by a constant amount, the y-values are multiplied by a constant amount. This amount is the constant ratio and is the value of b in f (x) = abx. CONFIDENTIAL

Identifying an Exponential Function Tell whether each set of ordered pairs satisfies an exponential function. Explain your answer. A) { (-1, 1.5) , (0, 3) , (1, 6) , (2, 12) } This is an exponential function. As the x-values increase by a constant amount, the y-values are multiplied by a constant amount. CONFIDENTIAL

This is not an exponential function. B) {(-1, -9) , (1, 9) , (3, 27) , (5, 45)} This is not an exponential function. As the x-values increase by a constant amount, the y-values are not multiplied by a constant amount. CONFIDENTIAL

Now you try! Tell whether each set of ordered pairs satisfies an exponential function. Explain your answer. 2a) {(-1, 1) , (0, 0) , (1, 1) , (2, 4)} 2b) {(-2, 4) , (-1, 2) , (0, 1) , (1, 0.5)} CONFIDENTIAL

Graphing y = abx with a > 0 and b > 1 Graph y = 3(4)x. Choose several values of x and generate ordered pairs. Graph the ordered pairs and connect with a smooth curve. CONFIDENTIAL

Now you try! 3a) Graph y = 2x. 3b) Graph y = 0.2 (5)x. CONFIDENTIAL

Graphing y = abx with a < 0 and b > 1 Graph y = -5 (2)x. Choose several values of x and generate ordered pairs. Graph the ordered pairs and connect with a smooth curve. CONFIDENTIAL

Now you try! 4a) Graph y = - 6x. 4b) Graph y = -3 (3)x. CONFIDENTIAL

Graphing y = abx with 0 < b < 1 Graph each exponential function. A) Graph y = 3(1)x. (2)x Choose several values of x and generate ordered pairs. Graph the ordered pairs and connect with a smooth curve. CONFIDENTIAL

Graphing y = abx with 0 < b < 1 B) Graph y = -2(0.4)x. Choose several values of x and generate ordered pairs. Graph the ordered pairs and connect with a smooth curve. CONFIDENTIAL

Now you try! 5a) Graph y = 4(1)x. (4)x 5b) Graph y = -2 (0.1)x. CONFIDENTIAL

The box summarizes the general shapes of exponential function graphs. CONFIDENTIAL

Statistics Application In the year 2000, the world population was about 6 billion, and it was growing by 1.21% each year. At this growth rate, the function f (x) = 6 (1.0121)x gives the population, in billions, x years after 2000. Using this model, in about what year will the population reach 7 billion? Enter the function into the Y= editor of a graphing calculator. Press 2nd Graph. Use the arrow keys to find a y-value as close to 7 as possible. The corresponding x-value is 13. The world population will reach 7 billion in about 2013. CONFIDENTIAL

Now you try! 6) An accountant uses f (x) = 12,330 (0.869)x , where x is the time in years since the purchase, to model the value of a car. When will the car be worth $2000? CONFIDENTIAL

Assessment 1) Tell whether y = 3x4 is an exponential function. 2) The function f(x) = 50,000(0.975)x , where x represents the underwater depth in meters, models the intensity of light below the water’s surface in lumens per square meter. What is the intensity of light 200 meters below the surface? Round your answer to the nearest whole number. CONFIDENTIAL

Tell whether each set of ordered pairs satisfies an exponential function. Explain your answer. 3) { (-1, -1) , (0, 0) , (1, -1) , (2, -4) } 4) { (0, 1) , (1, 4) , (2, 16) , (3, 64) } CONFIDENTIAL

Graph each exponential function. 5) y = 3x 7) y = 10(3)x 6) y = 5x 8) y = 5(2)x CONFIDENTIAL

9) The function f (x) = 57.8 (1.02)x gives the number of passenger cars, in millions, in the United States x years after 1960. Using this model, in about what year will the number of passenger cars reach 200 million? CONFIDENTIAL

Exponential Functions Let’s review Exponential Functions The table and the graph show an insect population that increases over time. CONFIDENTIAL

Exponential Functions A function rule that describes the pattern above is f(x) = 2 (3)x . This type of function, in which the independent variable appears in an exponent, is an exponential function . Notice that 2 is the starting population and 3 is the amount by which the population is multiplied each day. An exponential function has the form f (x) = abx , where a " 0, b ≠ 1, and b > 0. CONFIDENTIAL

Evaluating an Exponential Function A) The function f (x) = 2(3)x models an insect population after x days. What will the population be on the 5th day? f (x) = 2(3)x Write the function. f (5) = 2(3)5 Substitute 5 for x. = 2 (243) = 486 Evaluate 35 . Multiply. There will be 486 insects on the 5th day. CONFIDENTIAL

Remember that linear functions have constant first differences and quadratic functions have constant second differences. Exponential functions do not have constant differences, but they do have constant ratios. As the x-values increase by a constant amount, the y-values are multiplied by a constant amount. This amount is the constant ratio and is the value of b in f (x) = abx. CONFIDENTIAL

Identifying an Exponential Function Tell whether each set of ordered pairs satisfies an exponential function. Explain your answer. A) { (-1, 1.5) , (0, 3) , (1, 6) , (2, 12) } This is an exponential function. As the x-values increase by a constant amount, the y-values are multiplied by a constant amount. CONFIDENTIAL

Graphing y = abx with a > 0 and b > 1 Graph y = 3(4)x. Choose several values of x and generate ordered pairs. Graph the ordered pairs and connect with a smooth curve. CONFIDENTIAL

Graphing y = abx with a < 0 and b > 1 Graph y = -5 (2)x. Choose several values of x and generate ordered pairs. Graph the ordered pairs and connect with a smooth curve. CONFIDENTIAL

Graphing y = abx with 0 < b < 1 Graph each exponential function. A) Graph y = 3(1)x. (2)x Choose several values of x and generate ordered pairs. Graph the ordered pairs and connect with a smooth curve. CONFIDENTIAL

The box summarizes the general shapes of exponential function graphs. CONFIDENTIAL

Statistics Application In the year 2000, the world population was about 6 billion, and it was growing by 1.21% each year. At this growth rate, the function f (x) = 6 (1.0121)x gives the population, in billions, x years after 2000. Using this model, in about what year will the population reach 7 billion? Enter the function into the Y= editor of a graphing calculator. Press 2nd Graph. Use the arrow keys to find a y-value as close to 7 as possible. The corresponding x-value is 13. The world population will reach 7 billion in about 2013. CONFIDENTIAL

You did a great job today! CONFIDENTIAL