بلور شناسی سلول واحد (مفاهیم پایه ) انواع شبکه های دو بعدی و سه بعدی

Slides:



Advertisements
Similar presentations
Reciprocal Space Learning outcomes
Advertisements

Don’t Ever Give Up!.
Fundamental Concepts Crystalline: Repeating/periodic array of atoms; each atom bonds to nearest neighbor atoms. Crystalline structure: Results in a lattice.
Chap 8 Analytical Instruments. XRD Measure X-Rays “Diffracted” by the specimen and obtain a diffraction pattern Interaction of X-rays with sample creates.
Diffraction Basics Cora Lind-Kovacs Department of Chemistry & Biochemistry The University of Toledo Toledo, OH 43606
X-RAY DIFFRACTION X- Ray Sources Diffraction: Bragg’s Law
Crystal diffraction Laue Nobel prize Max von Laue
Experimentally, the Bragg law can be applied in two different ways:
Planes in Lattices and Miller Indices
III. Diffraction and Crystal Structure
CHAPTER 3: CRYSTAL STRUCTURES X-Ray Diffraction (XRD)
Determination of Crystal Structures by X-ray Diffraction
Internal – External Order We described symmetry of crystal habit (32 point groups) We also looked at internal ordering of atoms in 3-D structure (230 space.
Followed by a few examples of
Lecture 2.1 Crystalline Solids. Poly-crystalline solids - Grains Mono-crystalline solids- Whiskers, Wafers.
EEE539 Solid State Electronics
CHAPTER 2 : CRYSTAL DIFFRACTION AND PG Govt College for Girls
Announcements 1)Revised Lab timings: 1-3 PM (all groups) 2) Quiz 1, 28 th Jan 2014, Tuesday 7:30 PM, WS 209, WS 213.
Lec. (4,5) Miller Indices Z X Y (100).
Solid State Physics 2. X-ray Diffraction 4/15/2017.
X-Ray Diffraction. The XRD Technique Takes a sample of the material and places a powdered sample which is then illuminated with x-rays of a fixed wave-length.
Yat Li Department of Chemistry & Biochemistry University of California, Santa Cruz CHEM 146C_Experiment #3 Identification of Crystal Structures by Powder.
Typical Crystal Structures
Indexing cubic powder patterns
© Oxford Instruments Analytical Limited 2001 MODULE 2 - Introduction to Basic Crystallography Bravais Lattices Crystal system Miller Indices Crystallographic.
CONDENSED MATTER PHYSICS PHYSICS PAPER A BSc. (III) (NM and CSc.) Harvinder Kaur Associate Professor in Physics PG.Govt College for Girls Sector -11, Chandigarh.
Order in crystals Symmetry, X-ray diffraction. 2-dimensional square lattice.
X-Ray Diffraction ME 215 Exp#1. X-Ray Diffraction X-rays is a form of electromagnetic radiation having a range of wavelength from nm (0.01x10 -9.
Analysis of crystal structure x-rays, neutrons and electrons
Submitted By:- Nardev Kumar Bajaj Roll NO Group-C
CHE (Structural Inorganic Chemistry) X-ray Diffraction & Crystallography lecture 2 Dr Rob Jackson LJ1.16,
Miller Indices And X-ray diffraction
Analysis of crystal structure x-rays, neutrons and electrons
Chapter 7 X-Ray diffraction. Contents Basic concepts and definitions Basic concepts and definitions Waves and X-rays Waves and X-rays Crystal structure.
Lecture 3:Diffraction and Symmetry. Diffraction A characteristic of wave phenomena, where whenever a wavefront encounters an obstruction that alters the.
1 – Sodium Chloride Structure
بلور شناسی در فیزیک حالت جامد
BRAVAIS LATTICE Infinite array of discrete points arranged (and oriented) in such a way that it looks exactly the same from whichever point the array.
Solid State Physics (1) Phys3710
X-Ray Diffraction Dr. T. Ramlochan March 2010.
Diffraction Basics Coherent scattering around atomic scattering centers occurs when x-rays interact with material In materials with a crystalline structure,
Crystal Structure A “unit cell” is a subdivision of the lattice that has all the geometric characteristics of the total crystal. The simplest choice of.
X-ray diffraction. Braggs' law = 2d hkl sin  hkl X-ray diffraction From this set of planes, only get reflection at one angle -  From this set of planes,
Chapter 3: Structures via Diffraction Goals – Define basic ideas of diffraction (using x-ray, electrons, or neutrons, which, although they are particles,
XRD allows Crystal Structure Determination What do we need to know in order to define the crystal structure? - The size of the unit cell and the lattice.
Theory of diffraction Peter Ballo.
Electron Microcopy 180/ Useful info – many websites. Images here from
Crystal Structures & X-ray Diffraction Chemistry 123 Spring 2008 Dr. Woodward.
ESO 214: Nature and Properties of Materials
بلور شناسی در فیزیک حالت جامد
2. Wave Diffraction and Reciprocal Lattice Diffraction of Waves by Crystals Scattered Wave Amplitude Brillouin Zones Fourier Analysis of the Basis Quasicrystals.
IPCMS-GEMME, BP 43, 23 rue du Loess, Strasbourg Cedex 2
Basic Crystallography for X-ray Diffraction Earle Ryba.
Laue equations and reciprocal lattice  . Laue camera Unfiltered X-radiation through collimator back reflexion photo (spots on hyperbolas) forward.
King Abdulaziz University Chemical and Materials Engineering Department Chapter 3 The Structure of Crystalline Solids Session III.
Crystal Structure and Crystallography of Materials Chapter 14: Diffraction Lecture No. 2.
X-RAY METHODS FOR ORIENTING CRYSTALS
Single crystal XRD.
X-ray Diffraction & Crystal Structure Analysis
CHARACTERIZATION OF THE STRUCTURE OF SOLIDS
Ch.4 Atomic Structure of Solid Surfaces.
Unit V Diffraction and Microscopic techniques ( Basics) 9
Chap 3 Scattering and structures
Concepts of Crystal Geometry
Lecture 2.1 Crystalline Solids.
The Electromagnetic Spectrum
X-Ray Diffraction and Reciprocal Lattice
Lecture 2.1 Crystalline Solids.
Chapter 1 Crystallography
Crystal and X-ray Diffraction
Presentation transcript:

بلور شناسی سلول واحد (مفاهیم پایه ) انواع شبکه های دو بعدی و سه بعدی اندیس های میلر

تفاوت؟

سلول واحد در شبکه دو بعدی

سلول واحد در شبکه دو بعدی NaCl Crystal Structure

انتخاب دلخواه سلول واحد(حجم یکسان) Crystal Structure

چینش اتمها در سلول واحد مهم نیست Crystal Structure

- or if you don’t start from an atom Crystal Structure

ایا سلول واحد است؟ Crystal Structure

ایا سلول مثلثی سلول واحد است؟ Crystal Structure

Crystal Structure

پنج شبکه براوه دو بعدی Crystal Structure

یک ملکول هر نوع چرخشی را می تواند داشته باشد اما شبکه؟

Crystal Structure

1-CUBIC Crystal Structure

a- Simple Cubic (SC) Crystal Structure

Face Centered Cubic (FCC) 4 اتم در سلول واحدش وجود دارد (Cu,Ni,Pb..etc) ساختار fcc. دارند Crystal Structure

3 - Face Centered Cubıc Crystal Structure Atoms are all same.

2 - HEXAGONAL SYSTEM سه اتم در سلول واحدش وجود دارد. Crystal Structure

2 - HEXAGONAL SYSTEM Crystal Structure Atoms are all same.

Crystal Structure

3 - TRICLINIC 4 - MONOCLINIC CRYSTAL SYSTEM تری کلینیک کمترین میزان تقارن را داراست Triclinic (Simple) a ¹ ß ¹ g ¹ 90 oa ¹ b ¹ c Monoclinic (Simple) a = g = 90o, ß ¹ 90o a ¹ b ¹c Monoclinic (Base Centered) a = g = 90o, ß ¹ 90o a ¹ b ¹ c, Crystal Structure

5 - ORTHORHOMBIC SYSTEM Orthorhombic (FC) a = ß = g = 90o a ¹ b ¹ c Orthorhombic (Simple) a = ß = g = 90o a ¹ b ¹ c Orthorhombic (Base-centred) a = ß = g = 90o a ¹ b ¹ c Orthorhombic (BC) a = ß = g = 90o a ¹ b ¹ c Crystal Structure

6 – TETRAGONAL SYSTEM Tetragonal (BC) a = ß = g = 90o Tetragonal (P) a = ß = g = 90o a = b ¹ c Tetragonal (BC) a = ß = g = 90o a = b ¹ c Crystal Structure

7 - Rhombohedral (R) or Trigonal Rhombohedral (R) or Trigonal (S) a = b = c, a = ß = g ¹ 90o Crystal Structure

Miller Indices اندیس های میلر نمادهایی هستند که جهت صفحات اتمی را در کریستال مشخص می کنند این اندیس ها به گونه ای مشخص می شوند که مجوعه ای بی نهایت از صفحات بلوری را شامل مشوند و نحوه انتخابشان بگونه ای است که هماره صفحه انتخاب شده داخل سلول واحد قرار می گیرد. Crystal Structure

Example-1 Axis 1 ∞ 1/1 1/ ∞ Miller İndices (100) (1,0,0) X Y Z Intercept points 1 ∞ Reciprocals 1/1 1/ ∞ Smallest Ratio Miller İndices (100) Crystal Structure

Example-2 Axis 1 ∞ 1/1 1/ 1 1/ ∞ Miller İndices (110) (0,1,0) (1,0,0) Y Z Intercept points 1 ∞ Reciprocals 1/1 1/ 1 1/ ∞ Smallest Ratio Miller İndices (110) Crystal Structure

Example-3 Axis 1 1/1 1/ 1 Miller İndices (111) (0,0,1) (0,1,0) (1,0,0) Y Z Intercept points 1 Reciprocals 1/1 1/ 1 Smallest Ratio Miller İndices (111) Crystal Structure

Example-4 Axis 1/2 1 ∞ 1/(½) 1/ 1 1/ ∞ 2 Miller İndices (210) (0,1,0) (1/2, 0, 0) (0,1,0) Axis X Y Z Intercept points 1/2 1 ∞ Reciprocals 1/(½) 1/ 1 1/ ∞ Smallest Ratio 2 Miller İndices (210) Crystal Structure

Example-5 Axis 1 ∞ ½ 2 Miller İndices (102) a b c 1/1 1/ ∞ 1/(½) Intercept points 1 ∞ ½ Reciprocals 1/1 1/ ∞ 1/(½) Smallest Ratio 2 Miller İndices (102) Crystal Structure

Example-6 Axis -1 ∞ ½ 2 Miller İndices (102) a b c 1/-1 1/ ∞ 1/(½) Intercept points -1 ∞ ½ Reciprocals 1/-1 1/ ∞ 1/(½) Smallest Ratio 2 Miller İndices (102) Crystal Structure

Miller Indices [2,3,3] Plane intercepts axes at Reciprocal numbers are: Indices of the plane (Miller): (2,3,3) Indices of the direction: [2,3,3] (200) (111) (100) (110) (100) Crystal Structure

اندیس های میلر و جهتهای صفحات اتمی در بلور

اندیس های میلر و جهتهای صفحات اتمی در بلور

جهتهای بلوری و صفحات اتمی عمود بر انها اندیس های میلر یکسانی دارند.

Crystal Structure

Example-7 Crystal Structure

Indices of a Family or Form این {hkl} نماد کلیه اندیس های میلر مربوط به صفحات (hkl) را شامل می شود که بوسیله چرخش به همدیگر مر بوط می شوند Crystal Structure

3D – 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM تنها 14 شبکه براوه وجود دارد که فضای سه بعدی را می پوشاند. این 14 شبکه نیز در هفت سیستم بلوری معرفی شده گنجانده می شوند. Cubic Crystal System (SC, BCC,FCC) Hexagonal Crystal System (S) Triclinic Crystal System (S) Monoclinic Crystal System (S, Base-C) Orthorhombic Crystal System (S, Base-C, BC, FC) Tetragonal Crystal System (S, BC) Trigonal (Rhombohedral) Crystal System (S) Crystal Structure

3–Hexagonal Close-Packed Str. Crystal Structure

Hexagonal Close-packed Structure a=b a=120, c=1.633a,  basis : (0,0,0) (2/3a ,1/3a,1/2c) Crystal Structure

Packing A B A Close pack B C Sequence AAAA… Sequence ABABAB.. - simple cubic Sequence ABABAB.. hexagonal close pack Sequence ABAB… - body centered cubic Sequence ABCABCAB.. ?? Crystal Structure

First Brillouin Zone: Two Dimensional Oblique Lattice

First Four Brillouin Zones: Square Lattice

All Brillouin Zones: Square Lattice

Primitive Lattice Vectors: BCC Lattice

First Brillouin Zone: BCC

Primitive Lattice Vectors: FCC

Brillouin Zones: FCC

First Brillouin Zone BCC

First Brillouin Zone FCC

X-ray Diffraction Typical interatomic distances in solid are of the order of an angstrom. Thus the typical wavelength of an electromagnetic probe of such distances Must be of the order of an angstrom. Upon substituting this value for the wavelength into the energy equation, We find that E is of the order of 12 thousand eV, which is a typical X-ray Energy. Thus X-ray diffraction of crystals is a standard probe.

Wavelength vs particle energy

Bragg Diffraction: Bragg’s Law

Bragg’s Law The integer n is known as the order of the corresponding Reflection. The composition of the basis determines the relative Intensity of the various orders of diffraction.

Many sets of lattice planes produce Bragg diffraction

d Deviation = 2 Ray 1 Ray 2 dSin BRAGG’s EQUATION Deviation = 2 Ray 1 Ray 2     d  dSin The path difference between ray 1 and ray 2 = 2d Sin For constructive interference: n = 2d Sin

Bragg Spectrometer

Bragg Peaks

A beam of X-rays directed at a crystal interacts with the electrons of the atoms in the crystal The electrons oscillate under the influence of the incoming X-Rays and become secondary sources of EM radiation The secondary radiation is in all directions The waves emitted by the electrons have the same frequency as the incoming X-rays  coherent The emission will undergo constructive or destructive interference with waves scattered from other atoms Secondary emission Incoming X-rays

Sets Electron cloud into oscillation Sets nucleus (with protons) into oscillation Small effect  neglected

Oscillating charge re-radiates  In phase with the incoming x-rays

von Laue Formulation of X-Ray Diffraction

Condition for Constructive Interference

Bragg Scattering =K

The Laue Condition

Ewald Construction

Crystal structure determination Many s (orientations) Powder specimen POWDER METHOD Monochromatic X-rays Single  LAUE TECHNIQUE Panchromatic X-rays ROTATING CRYSTAL METHOD  Varied by rotation Monochromatic X-rays

THE POWDER METHOD Cone of diffracted rays

Different cones for different reflections POWDER METHOD Diffraction cones and the Debye-Scherrer geometry Different cones for different reflections Film may be replaced with detector http://www.matter.org.uk/diffraction/x-ray/powder_method.htm

Schematic X-Ray Diffractometer Detector X-Ray Source Powdered sample

Sample XRD Pattern

strong intensity = prominent crystal plane weak intensity = subordinate crystal plane background radiation

Determine D-Spacing from XRD patterns Bragg’s Law nλ = 2dsinθ n = reflection order (1,2,3,4,etc…) λ = radiation wavelength (1.54 angstroms) d = spacing between planes of atoms (angstroms) θ = angle of incidence (degrees)

strong intensity = prominent crystal plane nλ = 2dsinθ (1)(1.54) = 2dsin(15.5 degrees) 1.54 = 2d(0.267) d = 2.88 angstroms background radiation

d-spacing Intensity 2.88 100 2.18 46 1.81 31 1.94 25 2.10 20 1.75 15 2.33 10 2.01 1.66 5 1.71

The Bragg equation may be rearranged (if n=1) from to If the value of 1/(dh,k,l)2 in the cubic system equation above is inserted into this form of the Bragg equation you have Since in any specific case a and l are constant and if l2/4a2 = A pma 2010

Insert the values into a table and compute sin and sin2. Since the lowest value of sin2 is 3A and the next is 4A the first Entry in the Calc. sin2 column is (0.10854/3)*4 etc. d/Å Sin Sin2 Calc. Sin2 (h, k, I) 2.338 0.32945 0.10854 (1,1,1) 2.024 0.38056 0.14482 0.14472 (2,0,0) 1.431 0.53826 0.28972 0.28944 (2,2,0) 1.221 0.63084 0.39795 0.39798 (3,1,1) 1.169 0.65890 0.43414 0.43416 (2,2,2) 1.0124 0.76082 0.57884 0.57888 (4,0,0) 0.9289 0.82921 0.68758 0.68742 (3,3,1) 0.9055 0.85063 0.72358 0.72360 (4,2,0) The reflections have now been indexed. pma 2010