Today’s agenda: Announcements. Gauss’ Law Examples. You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry charge distribution.

Slides:



Advertisements
Similar presentations
QUICK QUIZ 24.1 (For the end of section 24.1)
Advertisements

Announcements Monday guest lecturer: Dr. Fred Salsbury. Solutions now available online. Will strive to post lecture notes before class. May be different.
Lecture 6 Problems.
Gauss’s law and its applications
Physics 2102 Lecture 4 Gauss’ Law II Physics 2102 Jonathan Dowling Carl Friedrich Gauss Version: 1/23/07 Flux Capacitor (Operational)
© 2012 Pearson Education, Inc. A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2)
C. less, but not zero. D. zero.
Phy 213: General Physics III Chapter 23: Gauss’ Law Lecture Notes.
Chapter 23 Gauss’ Law.
Electricity Electric Flux and Gauss’s Law 1 Electric Flux Gauss’s Law Electric Field of Spheres Other Gaussian Surfaces Point Charges and Spheres.
A Charged, Thin Sheet of Insulating Material
Slide 1 Electric Field Lines 10/29/08. Slide 2Fig 25-21, p.778 Field lines at a conductor.
Chapter 23 Gauss’s Law.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Nadiah Alanazi Gauss’s Law 24.3 Application of Gauss’s Law to Various Charge Distributions.
Example: calculate the electric field for 0
Hw: All Chapter 5 problems and exercises. Outline Applications of Gauss’s Law - The single Fixed Charge -Field of a sphere of charge -Field of a spherical.
From Chapter 23 – Coulomb’s Law
Gauss’ Law.
a b c Gauss’ Law … made easy To solve the above equation for E, you have to be able to CHOOSE A CLOSED SURFACE such that the integral is TRIVIAL. (1)
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
A b c Gauss' Law.
Fig 24-CO, p.737 Chapter 24: Gauss’s Law قانون جاوس 1- Electric Flux 2- Gauss’s Law 3-Application of Gauss’s law 4- Conductors in Electrostatic Equilibrium.
Chapter 22 Gauss’s Law.
Gauss’s Law The electric flux through a closed surface is proportional to the charge enclosed The electric flux through a closed surface is proportional.
© 2012 Pearson Education, Inc. { Chapter 22 Applying Gauss’s Law.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Physics 213 General Physics Lecture 3. 2 Last Meeting: Electric Field, Conductors Today: Gauss’s Law, Electric Energy and Potential.
Definitions Flux—The rate of flow through an area or volume. It can also be viewed as the product of an area and the vector field across the area Electric.
Electric Charge and Electric Field
Electric Flux and Gauss Law
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Dr. Jie ZouPHY Chapter 24 Gauss’s Law (cont.)
Physics 2112 Unit 4: Gauss’ Law
1 Lecture 3 Gauss’s Law Ch. 23 Physlet ch9_2_gauss/default.html Topics –Electric Flux –Gauss’
Application of Gauss’ Law to calculate Electric field:
ELECTRICITY PHY1013S GAUSS’S LAW Gregor Leigh
Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses.
Tue. Feb. 3 – Physics Lecture #26 Gauss’s Law II: Gauss’s Law, Symmetry, and Conductors 1. Electric Field Vectors and Electric Field Lines 2. Electric.
د/ بديع عبدالحليم د/ بديع عبدالحليم
A b c. Choose either or And E constant over surface is just the area of the Gaussian surface over which we are integrating. Gauss’ Law This equation can.
Physics 2102 Gauss’ law Physics 2102 Gabriela González Carl Friedrich Gauss
Physics 2113 Lecture: 09 MON 14 SEP
Sep. 27, 2007Physics 208 Lecture 81 From last time… This Friday’s honors lecture: Biological Electric Fields Dr. J. Meisel, Dept. of Zoology, UW Continuous.
Physics 212 Lecture 4, Slide 1 Physics 212 Lecture 4 Today's Concepts: Conductors + Using Gauss’ Law Applied to Determine E field in cases of high symmetry.
Physics 2113 Lecture 10: WED 16 SEP Gauss’ Law III Physics 2113 Jonathan Dowling Carl Friedrich Gauss 1777 – 1855 Flux Capacitor (Operational)
Fig 24-CO, p.737 Chapter 24: Gauss’s Law قانون جاوس 1- Electric Flux 2- Gauss’s Law 3-Application of Gauss’s law 4- Conductors in Electrostatic Equilibrium.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Example: calculate the electric field for 0
24.2 Gauss’s Law.
Exam 1 Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.
Cultural enlightenment time. Conductors in electrostatic equilibrium.
Electric flux To state Gauss’s Law in a quantitative form, we first need to define Electric Flux. # of field lines N = density of field lines x “area”
Physics 212 Lecture 4 Gauss’ Law.
Physics 2102 Lecture: 06 MON 26 JAN 08
Gauss’s Law ENROLL NO Basic Concepts Electric Flux
Chapter 22 Gauss’s Law.
Electric flux To state Gauss’s Law in a quantitative form, we first need to define Electric Flux. # of field lines N = density of field lines x “area”
Cultural enlightenment time. Conductors in electrostatic equilibrium.
Last Lectures This lecture Gauss’s law Using Gauss’s law for:
TOPIC 3 Gauss’s Law.
An insulating spherical shell has an inner radius b and outer radius c
E. not enough information given to decide Gaussian surface #1
C. less, but not zero. D. zero.
Physics 2113 Lecture: 11 MON 09 FEB
Last Lectures This lecture Gauss’s law Using Gauss’s law for:
Question for the day Can the magnitude of the electric charge be calculated from the strength of the electric field it creates?
From last time… Motion of charged particles
Electric flux To state Gauss’s Law in a quantitative form, we first need to define Electric Flux. # of field lines N = density of field lines x “area”
Presentation transcript:

Today’s agenda: Announcements. Gauss’ Law Examples. You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry charge distribution. Cultural enlightenment time. You must be culturally enlightened by this lecture. Conductors in electrostatic equilibrium. You must be able to use Gauss’ law to draw conclusions about the behavior of charged particles on, and electric fields in, conductors in electrostatic equilibrium.

Homework hints buried in the next 3 slides! Conductors in Electrostatic Equilibrium Electrostatic equilibrium means there is no net motion of tne charges inside the conductor. The electric field inside the conductor must be zero. Any excess charge must reside on the outside surface of the conductor. If this were not the case, charges would accelerate. Apply Gauss’ law to a Gaussian surface just inside the conductor surface. The electric field is zero, so the net charge inside the Gaussian surface is zero. Any excess charge must go outside the Gaussian surface, and on the conductor surface.

The electric field just outside a charged conductor must be perpendicular to the conductor’s surface. Otherwise, the component of the electric field parallel to the surface would cause charges to accelerate. The magnitude of the electric field just outside a charged conductor is equal to  /  0, where  is the magnitude of the local surface charge density. A simple application Gauss’ Law. Different from infinite sheet of charge because E is zero inside the conductor.

If there is an empty nonconducting cavity inside the conductor, Gauss’ Law tells us there is no net charge on the interior surface of the conductor. If there is a nonconducting cavity inside the conductor, with a charge inside the cavity, Gauss’ Law tells us there is an equal and opposite induced charge on the interior surface of the conductor. Construct a Gaussian surface that includes the inner surface of the conductor. The electric field at the Gaussian surface is zero, so no electric flux passes through the Gaussian surface. Gauss’ Law says the charge inside must be zero. Any excess charge must lie on the outer surface! The conductor does not have to be symmetric, as shown. +Q Construct a Gaussian surface that includes the inner surface of the conductor. The electric field at the Gaussian surface is zero, so no electric flux passes through the Gaussian surface. Gauss’ Law says the charge inside must be zero. Construct a Gaussian surface that includes the inner surface of the conductor. The electric field at the Gaussian surface is zero, so no electric flux passes through the Gaussian surface. Gauss’ Law says the charge inside must be zero. There must be a –Q on the inner surface. If the net charge on the conductor is not –Q, any additional charge must lie on the outer surface! The conductor does not have to be symmetric. -Q

Example: a conducting spherical shell of inner radius a and outer radius b with a net charge -Q is centered on point charge +2Q. Use Gauss’s law to show that there is a charge of -2Q on the inner surface of the shell, and a charge of +Q on the outer surface of the shell. a b -Q +2Q E=0 inside the conductor! QIQI r Let r be infinitesimally greater than a.

Example: a conducting spherical shell of inner radius a and outer radius b with a net charge -Q is centered on point charge +2Q. Use Gauss’s law to show that there is a charge of -2Q on the inner surface of the shell, and a charge of +Q on the outer surface of the shell. a b -Q +2Q From Gauss’ Law we know that excess* charge on a conductor lies on surfaces. QIQI r Electric charge is conserved: QOQO *excess=not required to give E=0 inside the conductor

Example: an insulating sphere of radius a has a uniform charge density ρ and a total positive charge Q. Calculate the electric field at a point inside the sphere a Q r This object in this example is not a conductor. See Dr. Waddill’s lecture on Gauss’ Law from a few years ago. Click on the word “lecture” in the previous sentence to view/download the lecture. lecture Here is the address for you to copy and paste into a web browser, in case the link in the above paragraph doesn’t work:

Demo: Professor Tries to Avoid Debilitating Electrical Shock While Demonstrating Van de Graaff Generator