Chapter 26 DC Circuits. I Junction rule: The sum of currents entering a junction equals the sum of the currents leaving it. 26-3 Kirchhoff’s Rules.

Slides:



Advertisements
Similar presentations
Chapter 19 DC Circuits.
Advertisements

Physics 121: Electricity & Magnetism – Lecture 8 DC Circuits
Physics 1161: Lecture 10 Kirchhoff’s Laws. Kirchhoff’s Rules Kirchhoff’s Junction Rule: – Current going in equals current coming out. Kirchhoff’s Loop.
Fundamentals of Circuits: Direct Current (DC)
Direct Current Circuits
The Lead Acid Electric Battery + - Spongy Lead (Pb) Lead Oxide (PbO 2 ) Sulfuric Acid Solution H 2 SO 4 Sulfuric Acid Electrolyte: Oxidation at the Negative.
Chapter 19 DC Circuits. Units of Chapter 19 EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff’s Rules EMFs in Series and in Parallel;
DC Circuits Series and parallel rules for resistors Kirchhoff’s circuit rules.
DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram below shows.
DC circuits Physics Department, New York City College of Technology.
Dr. Jie ZouPHY Chapter 28 Direct Current Circuits (Cont.)
Copyright © 2009 Pearson Education, Inc. Lecture 7 – DC Circuits.
Copyright © 2009 Pearson Education, Inc. Admin: Mid-term date Friday March 20 th. Assignments : Second graded assignment is posted Make time for it – it’s.
7/2/20151 T-Norah Ali Al-moneef king saud university.
Chapter 26 DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram.
Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.
Lecture 6 Direct Current Circuits Chapter 18 Outline Energy Source in Circuits Resistor Combinations Kirchhoff’s Rules RC Circuits.
Chapter 19 DC Circuits. Objectives: The student will be able to: Determine the equivalent capacitance of capacitors arranged in series or in parallel.
FCI. Direct Current Circuits: 3-1 EMF 3-2 Resistance in series and parallel. 3-3 Rc circuit 3-4 Electrical instruments FCI.
Chapter 26 DC Circuits. Units of Chapter EMF and Terminal Voltage - 1, Resistors in Series and in Parallel - 3, 4, 5, 6, Kirchhoff’s.
Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.
10/9/20151 General Physics (PHY 2140) Lecture 10  Electrodynamics Direct current circuits parallel and series connections Kirchhoff’s rules Chapter 18.
Introduction to Electrical Circuits Unit 17. Sources of emf  The source that maintains the current in a closed circuit is called a source of emf Any.
Chapter 19 DC Circuits. Objective of the Lecture Explain Kirchhoff’s Current and Voltage Laws. Demonstrate how these laws can be used to find currents.
Chapter 10 The Math for Kirchhoff Voltage and Current Laws along with Polarity in DC Circuits.
Series wiring means that the devices are connected in such a way that there is the same electric current through each device. One loop only for the flow.
Lecture 11-1 Electric Current Current = charges in motion Magnitude rate at which net positive charges move across a cross sectional surface Units: [I]
Physics for Scientists and Engineers II, Summer Semester Lecture 9: June 10 th 2009 Physics for Scientists and Engineers II.
Direct Current Circuits A current is maintained in a closed circuit by an emf (electromotive force) Battery. An emf forces electrons to move against the.
Kirchhoff’s Rules.
Chapter 28 Direct Current Circuits CHAPTER OUTLINE 28.1 Electromotive Force 28.2 Resistors in Series and Parallel 28.3 Kirchhoff’s Rules.
Lecture 24 Chapter 18 Kirchhoff’s Rules RC Circuits Monday
 Solving a circuit consists of finding unknown currents, the current direction, and the voltages in a circuit.  A multiloop circuit has more than one.
“Kirchhoff's Rules” Abdulrajab Layagin. Who is Gustav Kirchhoff?  A German physicist who contributed to the fundamental understanding of electrical circuits.
CH Review Series resistors have the same current; the total voltage is “divided” across the resistors. Parallel resistors have the same voltage;
19-2 EMF and Terminal Voltage A battery or generator, or other electrical energy creation device, is called the seat or source of electromotive force,
Series and Parallel Circuits
Announcements WebAssign HW Set 5 due this Friday Problems cover material from Chapters 18 My office hours today from 2 – 3 pm or by appointment (I am away.
Chapter 27 Lecture 23: Circuits: I. Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of.
Kirchhoff’s Laws Kirchhoff’s Current Law Kirchhoff’s Voltage Law Series Circuits Parallel Circuits Polarity.
Lectures 7 to 10 The Electric Current and the resistance Electric current and Ohm’s law The Electromotive Force and Internal Resistance Electrical energy.
Thursday, Mach 10, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #12 Chapter 26 Thursday Mar 10, 2011 Dr. Andrew Brandt HW6 Ch 26.
DC Circuits AP Physics Chapter 18. DC Circuits 19.1 EMF and Terminal Voltage.
Internal Resistance Review Kirchhoff’s Rules DC Electricity.
Chapter 19 DC Circuits. EMF and Terminal Voltage Any device that can transform a type of energy into electric energy is called a source of electromotive.
Chapter 26 DC Circuits. I 26-3 Kirchhoff’s Rules Example 26-9: Using Kirchhoff’s rules. Calculate the currents I 1, I 2, and I 3 in the three branches.
RESISTORS IN SERIES - In a series circuit, the current is the same
Kirchhoff’s Rules.
Chapter 26:DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram.
Direct Current Circuits
Direct Current Circuits
Direct Current Circuits
Chapter 26:DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram.
Kirchhoff’s Rules.
Direct Current Circuits
Circuit in DC Instruments
Resistors & Capacitors in Series and Parallel
Phys102 Lecture 12 Kirchhoff’s Rules
Chapter 26:DC Circuits No HW for the week after spring break,
EMF and Terminal Voltage
DC circuits Physics /3/2018 Lecture X.
Chapter 18: Direct-Current Circuits Sources of emf and internal resistance Resistors in series Req = R1+R2+… Resistors in.
Ideal vs Real Battery Ideal battery: no internal energy dissipation
Kirchhoff's Rules.
Direct Current Circuits
Physics 1161: Lecture 10 Kirchhoff’s Laws
University Physics: Waves and Electricity
Kirchhoff’s Rules Some circuits cannot be broken down into series and parallel connections. For these circuits we use Kirchhoff’s rules. Junction rule:
Phys102 Lecture 12 Kirchhoff’s Rules
Kirchhoff's Rules There are two KIRCHHOFF'S RULES. 1. Junction rule 2. Loop rule These are useful in circuit analysis.
Presentation transcript:

Chapter 26 DC Circuits

I Junction rule: The sum of currents entering a junction equals the sum of the currents leaving it Kirchhoff’s Rules

I Loop rule: The sum of the changes in potential around a closed loop is zero Kirchhoff’s Rules

I Problem Solving: Kirchhoff’s Rules 1. Label each current, including its direction. 2. Identify unknowns. 3. Apply junction and loop rules; you will need as many independent equations as there are unknowns. 4.Solve the equations, being careful with signs. If the solution for a current is negative, that current is in the opposite direction from the one you have chosen Kirchhoff’s Rules

I Example 26-9: Using Kirchhoff’s rules. Calculate the currents I 1, I 2, and I 3 in the three branches of the circuit in the figure.

I Loop Rule Traveling around the loop from a to b In a, the resistor is traversed in the direction of the current, the potential across the resistor is –IR In b, the resistor is traversed in the direction opposite of the current, the potential across the resistor is +IR

I Loop Rule, final In c, the source of emf is traversed in the direction of the emf (from – to +), the change in the electric potential is +ε In d, the source of emf is traversed in the direction opposite of the emf (from + to -), the change in the electric potential is -ε

I EMFs in series in the same direction: total voltage is the sum of the separate voltages Series and Parallel EMFs; Battery Charging

I EMFs in series, opposite direction: total voltage is the difference, but the lower-voltage battery is charged Series and Parallel EMFs; Battery Charging

I EMFs in parallel only make sense if the voltages are the same; this arrangement can produce more current than a single emf Series and Parallel EMFs; Battery Charging

I Example 26-10: Jump starting a car. A good car battery is being used to jump start a car with a weak battery. The good battery has an emf of 12.5 V and internal resistance Ω. Suppose the weak battery has an emf of 10.1 V and internal resistance 0.10 Ω. Each copper jumper cable is 3.0 m long and 0.50 cm in diameter, and can be attached as shown. Assume the starter motor can be represented as a resistor R s = 0.15 Ω. Determine the current through the starter motor (a) if only the weak battery is connected to it, and (b) if the good battery is also connected.