Week 7 2. The Laurent series and the Residue Theorem

Slides:



Advertisements
Similar presentations
2.2 Limits Involving Infinity
Advertisements

Chapter 20 Complex variables Cauchy-Riemann relation A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, there must be particular.
化工應用數學 Complex Algebra 授課教師: 林佳璋.
Week 8 2. The Laurent series and the Residue Theorem (continued)
1 Week 4 Complex numbers: analytic functions 1. Differentiation of complex functions 2. Cauchy’s Integral Theorem.
MATEMATIK 4 KOMPLEKS FUNKTIONSTEORI MM 1.2
MAT 4 – Kompleks Funktionsteori MATEMATIK 4 KOMPLEKS FUNKTIONSTEORI MM 1.1 MM 1.1: Laurent rækker Emner: Taylor rækker Laurent rækker Eksempler på udvikling.
1 Week 2 3. Multivalued functions or dependences ۞ A multivalued function, or dependence, f(z) is a rule establishing correspondence between a value of.
Week 5 2. Cauchy’s Integral Theorem (continued)
Complex Differentiation Mohammed Nasser Department of statistics RU.
Chapter 4. Integrals Weiqi Luo (骆伟祺) School of Software
Integration in the Complex Plane CHAPTER 18. Ch18_2 Contents  18.1 Contour Integrals 18.1 Contour Integrals  18.2 Cauchy-Goursat Theorem 18.2 Cauchy-Goursat.
Tch-prob1 Chapter 4 Integrals Complex integral is extremely important, mathematically elegant. 30. Complex-Valued Functions w(t) First consider derivatives.
Evaluation of Definite Integrals Via the Residue Theorem
Chp. 2. Functions of A Complex Variable II
11. Complex Variable Theory
October 21 Residue theorem 7.1 Calculus of residues Chapter 7 Functions of a Complex Variable II 1 Suppose an analytic function f (z) has an isolated singularity.
Propagators and Green’s Functions
Analytic Continuation: Let f 1 and f 2 be complex analytic functions defined on D 1 and D 2, respectively, with D 1 contained in D 2. If on D 1, then f.
1 Chap 6 Residues and Poles Cauchy-Goursat Theorem: if f analytic. What if f is not analytic at finite number of points interior to C Residues. 53. Residues.
Maximum Modulus Principle: If f is analytic and not constant in a given domain D, then |f(z)| has no maximum value in D. That is, there is no z 0 in the.
1 Week 1 Complex numbers: the basics 1. The definition of complex numbers and basic operations 2. Roots, exponential function, and logarithm 3. Multivalued.
Tch-prob1 Chap 5. Series Series representations of analytic functions 43. Convergence of Sequences and Series An infinite sequence 數列 of complex numbers.
D. R. Wilton ECE Dept. ECE 6382 Power Series Representations 8/24/10.
Chapter 5. Series Weiqi Luo (骆伟祺) School of Software
化工應用數學 授課教師: 郭修伯 Lecture 5 Solution by series (skip) Complex algebra.
1 Week 3 3. Multivalued functions or dependences (continued) with the non-positive part of the real axis of the complex plane removed, and require Example.
Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic.
1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration.
第1頁第1頁 Chapter 2 Analytic Function 9. Functions of a complex variable Let S be a set of complex numbers. A function defined on S is a rule that assigns.
1 Week 5 Linear operators and the Sturm–Liouville theory 1.Complex differential operators 2.Properties of self-adjoint operators 3.Sturm-Liouville theory.
1 1 Chapter 3 The z-Transform 2 2  Consider a sequence x[n] = u[n]. Its Fourier transform does not converge.  Consider that, instead of e j , we use.
Week 6 Residue Integration 1. Complex power series
Chapter 7 Applications of Residues - evaluation of definite and improper integrals occurring in real analysis and applied math - finding inverse Laplace.
Chapter 6. Residues and Poles Weiqi Luo ( 骆伟祺 ) School of Software Sun Yat-Sen University : Office : # A313
Riemann Zeta Function and Prime Number Theorem Korea Science Academy Park, Min Jae.
1 Week 8 3. Applications of the LT to ODEs Theorem 1: If the Laplace transforms of f(t), f ’ (t), and f ’’ (t) exist for some s, then Alternative notation:
Power Series Section 9.1a.
Section 2.2 Limits and Continuity
SECTION 8 Residue Theory (1) The Residue
ECE 6382 Functions of a Complex Variable as Mappings David R. Jackson Notes are adapted from D. R. Wilton, Dept. of ECE 1.
Review of Complex Numbers A complex number z = (x,y) is an ordered pair of real numbers; x is called the real part and y is called the imaginary part,
Power Series Representations ECE 6382 Notes are from D. R. Wilton, Dept. of ECE David R. Jackson 1.
Analytic Functions A function f(z) is said to be analytic in a domain D if f(z) is defined and differentiable at every point of D. f(z) is said to be analytic.
Evaluation of Definite Integrals via the Residue Theorem
ECE 6382 Integration in the Complex Plane David R. Jackson Notes are from D. R. Wilton, Dept. of ECE 1.
Singularities ECE 6382 Notes are from D. R. Wilton, Dept. of ECE David R. Jackson 1.
ECE 6382 Notes 3 Integration in the Complex Plane Fall 2016
Evaluation of Definite Integrals via the Residue Theorem
Week 4 Complex numbers: analytic functions
ECE 6382 Notes 6 Power Series Representations Fall 2016
Week 5 2. Cauchy’s Integral Theorem (continued)
Complex Integration  f(z)dz C
Week 2 3. Multivalued functions or dependences
Complex Analysis ITL SEL.
1. Complex Variables & Functions
The Residue Theorem and Residue Evaluation
Complex Variables. Complex Variables Open Disks or Neighborhoods Definition. The set of all points z which satisfy the inequality |z – z0|
CHAPTER 19 Series and Residues.
Pole and Product Expansions, and Series Summation
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 42.
Chapter 2 Analytic Function
Week 4 Complex numbers: analytic functions
Presented By Osman Toufiq Ist Year Ist SEM
Week 6 Residue Integration 1. Complex power series
PHY 711 Classical Mechanics and Mathematical Methods
Notes are from D. R. Wilton, Dept. of ECE
Chap 6 Residues and Poles
5.Series Laurent Expansion
Engineering Mathematics
Presentation transcript:

Week 7 2. The Laurent series and the Residue Theorem Theorem 1: Laurent’s Theorem If f(z) is analytic in an annulus (i.e. a domain between two concentric circles) with centre z0, then f(z) can be represented by the Laurent series, (1) Proof: Kreyszig, section 16.1 (non-examinable) ۞ The second term on the r.-h.s. of (1) is called the principal part of the Laurent series.

Comment: Instead of (1), one can write (observe the lower limit of summation). Example 1: Let’s find the principal part of the Laurent series of f(z) = z –3 e z at z = 0: Hence, b3 = b2 = 1, b1 = ½.

tan z has an isolated singularities at z = ±π/2, ±3π/2, ±5π/2... ۞ We say that a function f(z) has a singularity at z = z0 if f(z) is not analytic (perhaps not even defined) at z0, but every neighbourhood of z0 contains points where f(z) is analytic. ۞ We say that a function f(z) has an isolated singularity at z = z0 if f(z) has a singularity at z0, but is analytic in a neighbourhood of z0 (not including z0). Example 2: tan z has an isolated singularities at z = ±π/2, ±3π/2, ±5π/2... tan z –1 has a non-isolated singularity at z = 0 (and also isolated singularities at z = ±2/π, ±2/(3π), ±2/(5π)...). Comment: A function with an isolated singularity at z0 always has a Laurent series at z0 (why?).

۞ If the Laurent series of a function f(z) at z = z0 has a finite principal part (i.e. bn = 0 for all n > N), and if bN ≠ 0, we say that f(z) has at z0 a pole of order N. Example 3: Determine the order of the pole of the function from Example 1. ۞ If the principal part of the Laurent series of f(z) is infinite, we say that f(z) has an essential singularity at z0. Example 4: Show that e1/z has an essential singularity at z = 0.

Example 5: Behaviour of functions near poles and ESs Find out whether the following functions have a limit at z = 0 when this point is approached along the positive (negative) part of the real (imaginary) axis: Comment: A function with a branch point at z = z0 doesn’t have a Laurent series at z = z0 (explain why Theorem 1 doesn’t hold in this case). Thus, branch points are neither poles, nor essential singularities.

۞ A function f(z) is said to be analytic at infinity if g(z) = f(1/z) is analytic at z = 0. Example 6: Are the following functions: analytic at infinity? If they are not, determine the type of their singularity there. Theorem 2: Let a function f(z) be analytic on the extended complex plane (i.e. the complex plane + infinity). Then, f(z) = const. Proof: This theorem follows from Liouville’s Theorem (Theorem 5.5).

۞ The coefficient b1 of the Laurent series of a function f(z) at z = z0 is called the residue of f(z) at z0 and is denoted by Useful formulae: Let f(z) be analytic at z = z0. Then and, in general,

Example 7:

Theorem 3: the Residue Theorem Let f(z) be analytic at all points of a simply connected domain D except finitely many poles or essential singularities located at zn (where n = 1, 2... N). Let also f(z) be analytic on C, where the contour C is the boundary of D. Then where C is positively oriented (i.e. traversed in the counter- clockwise direction). Proof: This theorem follows from the principle of deformation of the path and Example 12 from TS 2, where we showed that...

where C is a positively oriented circle centred at z = z0. ۞ A function analytic in a domain D is often called holomorphic in D. ۞ A function that is analytic in a domain D except finitely many poles is often called meromorphic in D. Example 8: Calculate where C is a positively oriented unit circle centred at z = 0.