WS 2006-07 Algorithmentheorie 03 – Randomized Algorithms (Public Key Cryptosystems) Prof. Dr. Th. Ottmann.

Slides:



Advertisements
Similar presentations
CS 483 – SD SECTION BY DR. DANIYAL ALGHAZZAWI (4) Information Security.
Advertisements

Asymmetric-Key Cryptography
WS Algorithmentheorie 03 – Randomized Algorithms (Primality Testing) Prof. Dr. Th. Ottmann.
WS Algorithmentheorie 03 – Randomized Algorithms (Overview and randomised Quicksort) Prof. Dr. Th. Ottmann.
Session 4 Asymmetric ciphers.
Dr. Lo’ai Tawalbeh Summer 2007 Chapter 9 – Public Key Cryptography and RSA Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
OOP/Java1 Public Key Crytography From: Introduction to Algorithms Cormen, Leiserson and Rivest.
Public-key Cryptography Montclair State University CMPT 109 J.W. Benham Spring, 1998.
RSA ( Rivest, Shamir, Adleman) Public Key Cryptosystem
Dr Alejandra Flores-Mosri Message Authentication Internet Management & Security 06 Learning outcomes At the end of this session, you should be able to:
Public Key Crytography1 From: Introduction to Algorithms Cormen, Leiserson and Rivest.
Kemal AkkayaWireless & Network Security 1 Department of Computer Science Southern Illinois University Carbondale CS 591 – Wireless & Network Security Lecture.
Public Key Cryptography
Public Encryption: RSA
WS Algorithmentheorie 03 – Randomized Algorithms (Public Key Cryptosystems) Prof. Dr. Th. Ottmann.
Public Key Cryptography and the RSA Algorithm
Cryptography1 CPSC 3730 Cryptography Chapter 9 Public Key Cryptography and RSA.
Theory I Algorithm Design and Analysis (9 – Randomized algorithms) Prof. Dr. Th. Ottmann.
Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications.
The School of Electrical Engineering and Computer Science (EECS) CS/ECE Network Security Dr. Attila Altay Yavuz Topic 5 Essential Public Key Crypto Methods.
Chapter 3 Encryption Algorithms & Systems (Part C)
Fall 2010/Lecture 311 CS 426 (Fall 2010) Public Key Encryption and Digital Signatures.
Dr.Saleem Al_Zoubi1 Cryptography and Network Security Third Edition by William Stallings Public Key Cryptography and RSA.
Public Key Algorithms 4/17/2017 M. Chatterjee.
1 Pertemuan 08 Public Key Cryptography Matakuliah: H0242 / Keamanan Jaringan Tahun: 2006 Versi: 1.
Public Key Cryptography RSA Diffie Hellman Key Management Based on slides by Dr. Lawrie Brown of the Australian Defence Force Academy, University College,
Computer Science CSC 474Dr. Peng Ning1 CSC 474 Information Systems Security Topic 2.5 Public Key Algorithms.
Introduction to Public Key Cryptography
Public Key Model 8. Cryptography part 2.
 Introduction  Requirements for RSA  Ingredients for RSA  RSA Algorithm  RSA Example  Problems on RSA.
Andreas Steffen, , 4-PublicKey.pptx 1 Internet Security 1 (IntSi1) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.
Rachana Y. Patil 1 1.
CS5204 – Fall Cryptographic Security Presenter: Hamid Al-Hamadi October 13, 2009.
Page 1 Secure Communication Paul Krzyzanowski Distributed Systems Except as otherwise noted, the content of this presentation.
Prime Numbers Prime numbers only have divisors of 1 and self
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Network Security (A Very Brief Introduction)
Network and Communications Network Security Department of Computer Science Virginia Commonwealth University.
RSA Implementation. What is Encryption ? Encryption is the transformation of data into a form that is as close to impossible as possible to read without.
Cryptography: RSA & DES Marcia Noel Ken Roe Jaime Buccheri.
Cryptography Dec 29. This Lecture In this last lecture for number theory, we will see probably the most important application of number theory in computer.
Public-Key Cryptography CS110 Fall Conventional Encryption.
CS526: Information Security Prof. Sam Wagstaff September 16, 2003 Cryptography Basics.
Darci Miyashiro Math 480 April 29, 2013
Public-Key Encryption
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
1 Public-Key Cryptography and Message Authentication.
Computer and Network Security Rabie A. Ramadan Lecture 6.
Chapter 16 Security Introduction to CS 1 st Semester, 2012 Sanghyun Park.
Cryptography and Network Security Chapter 9 - Public-Key Cryptography
CS461/ECE422 Spring 2012 Nikita Borisov — UIUC1.  Text Chapters 2 and 21  Handbook of Applied Cryptography, Chapter 8 
PUBLIC-KEY CRYPTOGRAPH IT 352 : Lecture 2- part3 Najwa AlGhamdi, MSc – 2012 /1433.
IT 221: Introduction to Information Security Principles Lecture 4: Public-Key Cryptography For Educational Purposes Only Revised: September 15, 2002.
Cryptography and Network Security Public Key Cryptography and RSA.
Chapter 3 – Public Key Cryptography and RSA (A). Private-Key Cryptography traditional private/secret/single-key cryptography uses one key shared by both.
Public Key Cryptosystems RSA Diffie-Hellman Department of Computer Engineering Sharif University of Technology 3/8/2006.
Chapter 9 Public Key Cryptography and RSA. Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender.
PUBLIC-KEY CRYPTOGRAPHY AND RSA – Chapter 9 PUBLIC-KEY CRYPTOGRAPHY AND RSA – Chapter 9 Principles Applications Requirements RSA Algorithm Description.
CS 4803 Fall 04 Public Key Algorithms. Modular Arithmetic n Public key algorithms are based on modular arithmetic. n Modular addition. n Modular multiplication.
Introduction to Cryptography Lecture 9. Public – Key Cryptosystems Each participant has a public key and a private key. It should be infeasible to determine.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Computer Security Lecture 5 Ch.9 Public-Key Cryptography And RSA Prepared by Dr. Lamiaa Elshenawy.
Lecture 3 (Chapter 9) Public-Key Cryptography and RSA Prepared by Dr. Lamiaa M. Elshenawy 1.
ECE Prof. John A. Copeland fax Office: GCATT Bldg.
Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively as the true name and the good name, or the.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Public Key Cryptosystem
Chapter 3 - Public-Key Cryptography & Authentication
PUBLIC-KEY CRYPTOGRAPHY AND RSA – Chapter 9
Introduction to Cryptography
Presentation transcript:

WS Algorithmentheorie 03 – Randomized Algorithms (Public Key Cryptosystems) Prof. Dr. Th. Ottmann

2WS Randomized algorithms Classes of randomized algorithms Randomized Quicksort Randomized algorithm for Closest Pair Randomized primality test Cryptography

3WS Classes of randomized algorithms Las Vegas algorithms always correct; expected running time (“probably fast”) Example: randomized Quicksort Monte Carlo algorithms (mostly correct): probably correct; guaranteed running time Example: randomized primality test

4WS Application: cryptosystems Traditional encryption of messages with secret keys Disadvantages: 1.The key k has to be exchanged between A and B before the transmission of the message. 2.For messages between n parties n(n-1)/2 keys are required. Advantage: Encryption and decryption can be computed very efficiently.

5WS Duties of security providers Guarantee…  confidential transmission  integrity of data  authenticity of the sender  reliable transmission

6WS Public-key cryptosystems Diffie and Hellman (1976) Idea: Each participant A has two keys: 1.a public key P A accessible to every other participant 2.a private (or: secret) key S A only known to A.

7WS Public-key cryptosystems D = set of all legal messages, e.g. the set of all bit strings of finite length Three conditions: 1. P A and S A can be computed efficiently 2. S A (P A (M)) = M and P A (S A (M)) = M (P A, S A are inverse functions) 3. S A cannot be computed from P A (without unreasonable effort) 1-1

8WS Encryption in a public-key system A sends a message M to B. Dear Bob, I just checked the new... #*k- + #$<9 {o7::-&$3 (-##!]?8...

9WS Encryption in a public-key system 1. A accesses B’s public key P B (from a public directory or directly from B). 2. A computes the encrypted message C = P B (M) and sends C to B. 3. After B has received message C, B decrypts the message with his own private key S B : M = S B (C)

10WS Generating a digital signature A sends a digitally signed message M´ to B: 1. A computes the digital signature σ for M´ with her own private key: σ = S A (M´) 2. A sends the pair (M´,σ) to B. 3. After receiving (M´,σ), B verifies the digital signature: P A (σ) = M´ σ can by verified by anybody via the public P A.

11WS RSA cryptosystems R. Rivest, A. Shamir, L. Adleman Generating the public and private keys: 1. Randomly select two primes p and q of similar size, each with l+1 bits (l ≥ 500). 2. Let n = p·q 3. Let e be an integer that does not divide (p - 1)·(q - 1). 4. Calculate d = e -1 mod (p - 1)(q - 1) i.e.: d · e ≡ 1 mod (p - 1)(q - 1)

12WS RSA cryptosystems 5. Publish P = (e, n) as public key 6. Keep S = (d, n) as private key Divide message (represented in binary) in blocks of size 2·l. Interpret each block M as a binary number: 0 ≤ M < 2 2·l P(M) = M e mod n S(C) = C d mod n

13WS Computing the multiplicative inverse Algorithmus: Ext-Euklid Input: Two integers a and b where b  0 Output: gcd(a,b) and two integers x and y with xa + yb = gcd(a,b) if b = 0 then return (a, 1, 0); (d, x’, y’) := Ext-Euklid(b, a mod b); x := y’; y := x’ –  a/b  y’; return (d, x, y); Application: a=(p-1)(q-1) b=e Integers x and y with x(p-1)(q-1) + ye = gcd((p-1)(q-1),e) = 1