Thermal Instability and Turbulence in the ISM Alexei Kritsuk CASS/UCSD.

Slides:



Advertisements
Similar presentations
P.W. Terry K.W. Smith University of Wisconsin-Madison Outline
Advertisements

Magnetic Turbulence in MRX (for discussions on a possible cross-cutting theme to relate turbulence, reconnection, and particle heating) PFC Planning Meeting.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Simulations of the core/SOL transition of a tokamak plasma Frederic Schwander,Ph. Ghendrih, Y. Sarazin IRFM/CEA Cadarache G. Ciraolo, E. Serre, L. Isoardi,
September 2005 Magnetic field excitation in galaxies.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Oscillatory instability in a driven granular gas Evgeniy Khain Baruch Meerson Racah Institute of Physics Hebrew University of Jerusalem Granular gas: a.
Heating and Cooling 10 March 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
Convection Convection Matt Penrice Astronomy 501 University of Victoria.
Oct 17, Non-Equilibrium Ionization Orly Gnat (Caltech) with Amiel Sternberg (Tel-Aviv University) Gnat & Sternberg 2007, ApJS, 168, 213 in Post-Shock.
Zurich, September 18 th 2007 Adrianne SlyzUniversity of Oxford Lessons on ISM modelling from kiloparsec scale simulations.
Xia Zhou & Xiao-ping Zheng The deconfinement phase transition in the interior of neutron stars Huazhong Normal University May 21, 2009 CSQCD Ⅱ.
What Shapes the Structure of MCs: Turbulence of Gravity? Alexei Krtisuk Laboratory for Computational Astrophysics University of California, San Diego CCAT.
Inflating Fat Bubbles in Clusters of Galaxies by Slow Wide Jets Assaf Sternberg (did the work) Noam Soker (speaker today) Technion, Israel July 2008.
1 Physics of turbulence muna Al_khaswneh Dr.Ahmad Al-salaymeh.
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology Craig Booth Tom Theuns & Takashi Okamoto.
Interstellar Turbulence and hierarchical structuring Nicolas Décamp (Univ. della Calabria) Jacques Le Bourlot (Obs. de Paris)
Jonathan Slavin Harvard-Smithsonian CfA
Brookhaven Science Associates U.S. Department of Energy Neutrino Factory / Muon Collider Collaboration Meeting March 17-19, 2008, FNAL, Batavia, IL Target.
An introduction to the physics of the interstellar medium III. Hydrodynamics in the ISM Patrick Hennebelle.
Cosmic Rays and Thermal Instability T. W. Hartquist, A. Y. Wagner, S. A. E. G. Falle, J. M. Pittard, S. Van Loo.
Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Nagoya Univ) Thanks to Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto Univ.) Patrick.
1 Magnetic fields in star forming regions: theory Daniele Galli INAF-Osservatorio di Arcetri Italy.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Origin, Evolution, and Signatures of Cosmological Magnetic Fields, Nordita, June 2015 Evolution of magnetic fields in large scale anisotropic MHD flows.
1 Enrique Vázquez-Semadeni Adriana Gazol CRyA UNAM, México Collaborators: Thierry Passot (OCA) Jongsoo Kim (KASI) Dongsu Ryu (Chungnam U.) Ricardo González.
Crushing of interstellar gas clouds Part I - Thermal Conduction and Radiative Losses - Equations: Heat Flux: Initial conditions Cloud Mass Fraction: choose.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Thermodynamic Self- Consistency and Deconfinement Transition Zheng Xiaoping Beijing 2009.
Neutrino Factory / Muon Collider Target Meeting Numerical Simulations for Jet-Proton Interaction Wurigen Bo, Roman Samulyak Department of Applied Mathematics.
Richard Rotunno National Center for Atmospheric Research, USA Dynamic Mesoscale Mountain Meteorology Lecture 5: Orographic Precipitation.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
Department of Physics and Astronomy Rice University From the Omega facility to the Hubble Space Telescope: Experiments and Observations of Supersonic Fluid.
Structure and Stability of Phase Transition Layers in the Interstellar Medium Tsuyoshi Inoue, Shu-ichiro Inutsuka & Hiroshi Koyama 1 12 Kyoto Univ. Kobe.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
-1- Solar wind turbulence from radio occultation data Chashei, I.V. Lebedev Physical Institute, Moscow, Russia Efimov, A.I., Institute of Radio Engineering.
The Power Spectra and Point Distribution Functions of Density Fields in Isothermal, HD Turbulent Flows Korea Astronomy and Space Science Institute Jongsoo.
Statistical Properties (PS, PDF) of Density Fields in Isothermal Hydrodynamic Turbulent Flows Jongsoo Kim Korea Astronomy and Space Science Institute Collaborators:
Ch17 Temperature and Heat
Relativistic Jets: Krakow June The Interaction of Jets with the Interstellar Medium of Radio Galaxies Geoff Bicknell, Ralph Sutherland, Vicky.
Zeldovich-90, Prethermalization in early Universe D. Podolsky, G. Felder, L. Kofman, M. Peloso CITA (Toronto), Landau ITP (Moscow), University.
Electrostatic fluctuations at short scales in the solar-wind turbulent cascade. Francesco Valentini Dipartimento di Fisica and CNISM, Università della.
Arthur Straube PATTERNS IN CHAOTICALLY MIXING FLUID FLOWS Department of Physics, University of Potsdam, Germany COLLABORATION: A. Pikovsky, M. Abel URL:
Instability of optical speckle patterns in cold atomic gases ? S.E. Skipetrov CNRS/Grenoble (Part of this.
Phase transitions in turbulence Coherence and fluctuations: turbulence as quantum phenomenon N. Vladimirova, G. Falkovich, S. Derevyanko Академгородок,
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
Obtaining turbulence properties from surveys Jungyeon Cho Chungnam National University, Korea Cho & Ryu (2009, ApJL) Cho et al. (2013, in prep.)
Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Kyoto Univ.) Collaboration with Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Grain Shattering and Coagulation in Interstellar Medium Hiroyuki Hirashita (ASIAA, Taiwan) Huirong Yan (Univ. of Arizona) Kazu Omukai (NAOJ)
Arman Khalatyan AIP 2006 GROUP meeting at AIP. Outline What is AGN? –Scales The model –Multiphase ISM in SPH SFR –BH model Self regulated accretion ?!
Phases et turbulence dans le milieu interstellaire Patrick Hennebelle Edouard Audit (CEA, Saclay) Shu-ichiro Inutsuka (Kyoto University), Robi Banerjee.
Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells Ming Zhang Department of Physics and Space Sciences, Florida Institute.
An update on convection zone modeling with the ASH code
Hasan Nourdeen Martin Blunt 10 Jan 2017
Modeling Astrophysical Turbulence
Ordinary Cells: Theory
Convective instability of a decelerating relativistic shell: an origin of magnetic fields in the early afterglow phase? Amir Levinson, Tel Aviv University.
Kinetic Theory.
Ch 2 - Kinetic Theory reinisch_
Universe = system (Ur) and reservoir (Ur,Tr) constrained by U0=Ur+Us
N. Vladimirova, G. Falkovich, S. Derevyanko
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Kinetic Theory.
Investigating Dansgaard-Oeschger events via a 2-D ocean model
Kinetic Theory.
Basic Principles for Design of Ignition Systems
PARTICLE ACCELERATION IN STRONG SHOCKS: INFLUENCE ON THE SUPERNOVA REMNANT EVOLUTION IN RADIO Dejan Urošević Department of Astronomy, Faculty of Mathematics,
Presentation transcript:

Thermal Instability and Turbulence in the ISM Alexei Kritsuk CASS/UCSD

Outline TI basics TI basics TI-induced turbulence TI-induced turbulence Sustaining turbulence with variable heating source Sustaining turbulence with variable heating source Scaling relations for multiphase turbulence Scaling relations for multiphase turbulence Thermal pancakes with AMR Thermal pancakes with AMR

TI Theory Highlights Linear stability of thermal equilibrium [Field 1965] 546 Linear stability of thermal equilibrium [Field 1965] 546 Generic linear stability [Hunter 1970,71] 10 Generic linear stability [Hunter 1970,71] 10 Phase equilibrium [Zel’dovich & Pikel’ner 1969] (62) Phase equilibrium [Zel’dovich & Pikel’ner 1969] (62) Nonlinear thermal waves [Doroshkevich & Zel’dovich 1981] 12 Nonlinear thermal waves [Doroshkevich & Zel’dovich 1981] 12 Thermal pancakes [Sasorov 1988] (10) Thermal pancakes [Sasorov 1988] (10) Complexity from TI [Elphick et al. 1991] 16 Complexity from TI [Elphick et al. 1991] 16 Two-phase model [FGH 1969] 419 Two-phase model [FGH 1969] 419 Three-phase model [McKee & Ostriker 1977] 973 Three-phase model [McKee & Ostriker 1977] 973 ADS citations ( … ) Web of Knowledge

TI Equations

TI-induced Turbulence ApJL 569, L127 (2002)

TI-induced Turbulence low-density

What’s Happening?

Phase Diagram

Phase Diagrams

Mach number vs. Density

Phase Transitions Stimulated by Time-dependent Heating ApJL 580, L51 (2002)

Interstellar Phase Transitions response to time-dependent local FUV field Low-density region High-density region

Time Evolution of Global Variables

Phase Diagram low-density

Phase Fractions low-density

Phase Diagram high-density

Energy Exchange high-density

Scaling Relations for Turbulence in Multiphase ISM ApJL in press (Jan 2004)

TI-induced Turbulence high-density

Phase Diagram

Phase Fractions

Velocity Power Spectra at 0.12, 0.56, 1.5, and 2.5 Myr totalcompressionalsolenoidal Kolmogorov Burgers

Velocity Structure Functions

Velocity Structure Functions at 0.5 Myr (order 1, …, 6) longitudinaltransverse

Scaling Exponents for velocity structure functions

Initial Rapid Cooling Stage

Structures within a slice at 0.12 Myr Log densityDiv uLog(|rot u|)

Structures at 0.12 Myr density vorticity divergence pressure

Structures at 0.12 and 0.56 Myr Log densityLog | rot (u) |

Mach number vs. density at 0.56 Myr Threshold density

Scaling Exponents at 0.56 Myr

Work in progress…

Thermal Pancakes with AMR