CS61C L31 Caches I (1) Garcia, Spring 2007 © UCB Powerpoint bad!!  Research done at the Univ of NSW says that “working memory”, the brain part providing.

Slides:



Advertisements
Similar presentations
Pipelining II (1) Fall 2005 Lecture 19: Pipelining II.
Advertisements

CS 430 – Computer Architecture
Modified from notes by Saeid Nooshabadi COMP3221: Microprocessors and Embedded Systems Lecture 25: Cache - I Lecturer:
CS61C L29 CPU Design : Pipelining to Improve Performance II (1) Garcia, Fall 2006 © UCB Running away with it  Our #8 football team had a great effort.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 29 – CPU Design : Pipelining to Improve Performance II Designed for the.
CS Computer Architecture 1 CS 430 – Computer Architecture Pipelined Execution - Review William J. Taffe using slides of David Patterson.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 29 – CPU Design : Pipelining to Improve Performance II Cal researcher Marty.
CS61C L31 Caches II (1) Garcia, Fall 2006 © UCB GPUs >> CPUs?  Many are using graphics processing units on graphics cards for high-performance computing.
Memory Subsystem and Cache Adapted from lectures notes of Dr. Patterson and Dr. Kubiatowicz of UC Berkeley.
Lecturer PSOE Dan Garcia
CS61C L22 CPU Design : Pipelining to Improve Performance II (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L23 Cache II (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 – Cache II.
CS 61C L20 Caches I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L24 Introduction to CPU Design (1) Garcia, Spring 2007 © UCB Cell pic to web site  A new MS app lets people search the web based on a digital cell.
CS61C L30 CPU Design : Pipelining to Improve Performance II (1) Garcia, Spring 2007 © UCB E-voting bill in congress!  Rep Rush Holt (D-NJ) has a bill.
CS61C L22 Caches III (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #22: Caches Andy.
COMP3221 lec33-Cache-I.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 12: Cache Memory - I
CS61C L23 Caches I (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 Cache I.
Computer ArchitectureFall 2008 © October 27th, 2008 Majd F. Sakr CS-447– Computer Architecture.
CS61C L21 State Elements : Circuits that Remember (1) Garcia, Fall 2006 © UCB One Laptop per Child  The OLPC project has been making news recently with.
CS61C L21 Caches I (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 31 – Caches II In this week’s Science, IBM researchers describe a new class.
CS61C L33 Caches III (1) Garcia, Spring 2007 © UCB Future of movies is 3D?  Dreamworks says they may exclusively release movies in this format. It’s based.
CS61C L32 Caches II (1) Garcia, 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS61C L18 Introduction to CPU Design (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L31 Caches I (1) Garcia 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS 61C L35 Caches IV / VM I (1) Garcia, Fall 2004 © UCB Andy Carle inst.eecs.berkeley.edu/~cs61c-ta inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS61C L20 Caches I (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #20: Caches Andy Carle.
CS61C L32 Caches II (1) Garcia, Spring 2007 © UCB Experts weigh in on Quantum CPU  Most “profoundly skeptical” of the demo. D-Wave has provided almost.
CS61C L30 Caches I (1) Garcia, Fall 2006 © UCB Shuttle can’t fly over Jan 1?  A computer bug has come up for the shuttle – its computers don’t reset to.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 30 – Caches I Touted as “the fastest CPU on Earth”, IBM’s new Power6 doubles.
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
Computer ArchitectureFall 2007 © November 7th, 2007 Majd F. Sakr CS-447– Computer Architecture.
CS61C L24 Cache II (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #24 Cache II.
ENEE350 Ankur Srivastava University of Maryland, College Park Based on Slides from Mary Jane Irwin ( )
CS61C L24 Introduction to CPU Design (1) Garcia, Fall 2006 © UCB Fedora Core 6 (FC6) just out  The latest version of the distro has been released; they.
CS61C L33 Virtual Memory I (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley.
Cs 61C L17 Cache.1 Patterson Spring 99 ©UCB CS61C Cache Memory Lecture 17 March 31, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 24 Introduction to CPU design Stanford researchers developing 3D camera.
CS61C L31 Pipelined Execution, part II (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L21 Caches II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS 61C L30 Introduction to Pipelined Execution (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L38 Pipelined Execution, part II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
DAP Spr.‘98 ©UCB 1 Lecture 11: Memory Hierarchy—Ways to Reduce Misses.
Cache Memory CSE Slides from Dan Garcia, UCB.
CMPE 421 Parallel Computer Architecture
CS1104: Computer Organisation School of Computing National University of Singapore.
Five Components of a Computer
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 10 Memory Hierarchy.
3-May-2006cse cache © DW Johnson and University of Washington1 Cache Memory CSE 410, Spring 2006 Computer Systems
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
CS61C L17 Cache1 © UC Regents 1 CS61C - Machine Structures Lecture 17 - Caches, Part I October 25, 2000 David Patterson
CML CML CS 230: Computer Organization and Assembly Language Aviral Shrivastava Department of Computer Science and Engineering School of Computing and Informatics.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
Csci 211 Computer System Architecture – Review on Cache Memory Xiuzhen Cheng
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
Caches Hiding Memory Access Times. PC Instruction Memory 4 MUXMUX Registers Sign Ext MUXMUX Sh L 2 Data Memory MUXMUX CONTROLCONTROL ALU CTL INSTRUCTION.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 30 – Caches I After more than 4 years C is back at position number 1 in.
1 Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4.
CS61C L22 Pipelining II, Cache I (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #22.
CS61C L24 State Elements : Circuits that Remember (1) Garcia, Fall 2014 © UCB Senior Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
1 Chapter Seven. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value.
1 Lecture 20: OOO, Memory Hierarchy Today’s topics:  Out-of-order execution  Cache basics.
Instructor Paul Pearce
Memristor memory on its way (hopefully)
CS-447– Computer Architecture Lecture 20 Cache Memories
Lecturer PSOE Dan Garcia
Some of the slides are adopted from David Patterson (UCB)
Some of the slides are adopted from David Patterson (UCB)
Presentation transcript:

CS61C L31 Caches I (1) Garcia, Spring 2007 © UCB Powerpoint bad!!  Research done at the Univ of NSW says that “working memory”, the brain part providing temporary storage, is limited (3-4 things for 20 sec unless rehearsal), and saying what is on slides splits attention, & bad. Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 31 – Caches I slashdot.org/article.pl?sid=07/04/04/

CS61C L31 Caches I (2) Garcia, Spring 2007 © UCB Review : Pipelining Pipeline challenge is hazards Forwarding helps w/many data hazards Delayed branch helps with control hazard in our 5 stage pipeline Data hazards w/Loads  Load Delay Slot  Interlock  “smart” CPU has HW to detect if conflict with inst following load, if so it stalls More aggressive performance (discussed in section next week) Superscalar (parallelism) Out-of-order execution

CS61C L31 Caches I (3) Garcia, Spring 2007 © UCB Peer Instruction (2/2) Assume 1 instr/clock, delayed branch, 5 stage pipeline, forwarding, interlock on unresolved load hazards (after 10 3 loops, so pipeline full). Rewrite this code to reduce pipeline stages (clock cycles) per loop to as few as possible. Loop:lw $t0, 0($s1) addu $t0, $t0, $s2 sw $t0, 0($s1) addiu $s1, $s1, -4 bne $s1, $zero, Loop nop How many pipeline stages (clock cycles) per loop iteration to execute this code? Thanks to Peter Devore for catching this! bne $s1, $0, Loop ALU I$ Reg D$Reg addiu $s1,$s1,-4 IFID/RFEXMEMWB ALU I$ Reg D$ Reg Patterson: Real HW has this forwarding (no stall), but for simplicity, COD doesn’t (stall) - p ?

CS61C L31 Caches I (4) Garcia, Spring 2007 © UCB The Big Picture Processor (active) Computer Control (“brain”) Datapath (“brawn”) Memory (passive) (where programs, data live when running) Devices Input Output Keyboard, Mouse Display, Printer Disk, Network

CS61C L31 Caches I (5) Garcia, Spring 2007 © UCB Memory Hierarchy Processor holds data in register file (~100 Bytes) Registers accessed on nanosecond timescale Memory (we’ll call “main memory”) More capacity than registers (~Gbytes) Access time ~ ns Hundreds of clock cycles per memory access?! Disk HUGE capacity (virtually limitless) VERY slow: runs ~milliseconds Storage in computer systems:

CS61C L31 Caches I (6) Garcia, Spring 2007 © UCB Motivation: Why We Use Caches (written $) µProc 60%/yr. DRAM 7%/yr DRAM CPU 1982 Processor-Memory Performance Gap: (grows 50% / year) Performance 1989 first Intel CPU with cache on chip 1998 Pentium III has two levels of cache on chip

CS61C L31 Caches I (7) Garcia, Spring 2007 © UCB Memory Caching Mismatch between processor and memory speeds leads us to add a new level: a memory cache Implemented with same IC processing technology as the CPU (usually integrated on same chip): faster but more expensive than DRAM memory. Cache is a copy of a subset of main memory. Most processors have separate caches for instructions and data.

CS61C L31 Caches I (8) Garcia, Spring 2007 © UCB Memory Hierarchy Processor Size of memory at each level Increasing Distance from Proc., Decreasing speed Level 1 Level 2 Level n Level 3... Higher Lower Levels in memory hierarchy As we move to deeper levels the latency goes up and price per bit goes down.

CS61C L31 Caches I (9) Garcia, Spring 2007 © UCB Memory Hierarchy If level closer to Processor, it is: smaller faster subset of lower levels (contains most recently used data) Lowest Level (usually disk) contains all available data (or does it go beyond the disk?) Memory Hierarchy presents the processor with the illusion of a very large very fast memory.

CS61C L31 Caches I (10) Garcia, Spring 2007 © UCB Memory Hierarchy Analogy: Library (1/2) You’re writing a term paper (Processor) at a table in Doe Doe Library is equivalent to disk essentially limitless capacity very slow to retrieve a book Table is main memory smaller capacity: means you must return book when table fills up easier and faster to find a book there once you’ve already retrieved it

CS61C L31 Caches I (11) Garcia, Spring 2007 © UCB Memory Hierarchy Analogy: Library (2/2) Open books on table are cache smaller capacity: can have very few open books fit on table; again, when table fills up, you must close a book much, much faster to retrieve data Illusion created: whole library open on the tabletop Keep as many recently used books open on table as possible since likely to use again Also keep as many books on table as possible, since faster than going to library

CS61C L31 Caches I (12) Garcia, Spring 2007 © UCB Memory Hierarchy Basis Cache contains copies of data in memory that are being used. Memory contains copies of data on disk that are being used. Caches work on the principles of temporal and spatial locality. Temporal Locality: if we use it now, chances are we’ll want to use it again soon. Spatial Locality: if we use a piece of memory, chances are we’ll use the neighboring pieces soon.

CS61C L31 Caches I (13) Garcia, Spring 2007 © UCB Cache Design How do we organize cache? Where does each memory address map to? (Remember that cache is subset of memory, so multiple memory addresses map to the same cache location.) How do we know which elements are in cache? How do we quickly locate them?

CS61C L31 Caches I (14) Garcia, Spring 2007 © UCB Administrivia Project 4 (on Caches) will be in optional groups of two. I’m releasing old CS61C finals Check the course web page

CS61C L31 Caches I (15) Garcia, Spring 2007 © UCB Direct-Mapped Cache (1/4) In a direct-mapped cache, each memory address is associated with one possible block within the cache Therefore, we only need to look in a single location in the cache for the data if it exists in the cache Block is the unit of transfer between cache and memory

CS61C L31 Caches I (16) Garcia, Spring 2007 © UCB Direct-Mapped Cache (2/4) Cache Location 0 can be occupied by data from: Memory location 0, 4, 8,... 4 blocks  any memory location that is multiple of 4 Memory Memory Address A B C D E F 4 Byte Direct Mapped Cache Cache Index What if we wanted a block to be bigger than one byte? Block size = 1 byte

CS61C L31 Caches I (17) Garcia, Spring 2007 © UCB Direct-Mapped Cache (3/4) When we ask for a byte, the system finds out the right block, and loads it all! How does it know right block? How do we select the byte? E.g., Mem address 11101? How does it know WHICH colored block it originated from? What do you do at baggage claim? Memory Memory Address A C E A 1C 1E 8 Byte Direct Mapped Cache Cache Index etc Block size = 2 bytes

CS61C L31 Caches I (18) Garcia, Spring 2007 © UCB Direct-Mapped Cache (4/4) What should go in the tag? Do we need the entire address?  What do all these tags have in common? What did we do with the immediate when we were branch addressing, always count by bytes? Why not count by cache #? It’s useful to draw memory with the same width as the block size Memory (addresses shown) Memory Address A C E A 1C 1E 8 Byte Direct Mapped Cache w/Tag! Cache Index etc Tag Data (Block size = 2 bytes) E Cache#

CS61C L31 Caches I (19) Garcia, Spring 2007 © UCB Issues with Direct-Mapped Since multiple memory addresses map to same cache index, how do we tell which one is in there? What if we have a block size > 1 byte? Answer: divide memory address into three fields ttttttttttttttttt iiiiiiiiii oooo tagindexbyte to checkto offset if have selectwithin correct blockblockblock

CS61C L31 Caches I (20) Garcia, Spring 2007 © UCB Direct-Mapped Cache Terminology All fields are read as unsigned integers. Index: specifies the cache index (which “row”/block of the cache we should look in) Offset: once we’ve found correct block, specifies which byte within the block we want Tag: the remaining bits after offset and index are determined; these are used to distinguish between all the memory addresses that map to the same location

CS61C L31 Caches I (21) Garcia, Spring 2007 © UCB TIO Dan’s great cache mnemonic AREA (cache size, B) = HEIGHT (# of blocks) * WIDTH (size of one block, B/block) WIDTH (size of one block, B/block) HEIGHT (# of blocks) AREA (cache size, B) 2 (H+W) = 2 H * 2 W Tag Index Offset

CS61C L31 Caches I (22) Garcia, Spring 2007 © UCB Direct-Mapped Cache Example (1/3) Suppose we have a 16KB of data in a direct-mapped cache with 4 word blocks Determine the size of the tag, index and offset fields if we’re using a 32-bit architecture Offset need to specify correct byte within a block block contains 4 words = 16 bytes = 2 4 bytes need 4 bits to specify correct byte

CS61C L31 Caches I (23) Garcia, Spring 2007 © UCB Direct-Mapped Cache Example (2/3) Index: (~index into an “array of blocks”) need to specify correct block in cache cache contains 16 KB = 2 14 bytes block contains 2 4 bytes (4 words) # blocks/cache =bytes/cache bytes/block = 2 14 bytes/cache 2 4 bytes/block =2 10 blocks/cache need 10 bits to specify this many blocks

CS61C L31 Caches I (24) Garcia, Spring 2007 © UCB Direct-Mapped Cache Example (3/3) Tag: use remaining bits as tag tag length = addr length – offset - index = bits = 18 bits so tag is leftmost 18 bits of memory address Why not full 32 bit address as tag? All bytes within block need same address (4b) Index must be same for every address within a block, so it’s redundant in tag check, thus can leave off to save memory (here 10 bits)

CS61C L31 Caches I (25) Garcia, Spring 2007 © UCB Peer Instruction A. Mem hierarchies were invented before (UNIVAC I wasn’t delivered ‘til 1951) B. If you know your computer’s cache size, you can often make your code run faster. C. Memory hierarchies take advantage of spatial locality by keeping the most recent data items closer to the processor. ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT

CS61C L31 Caches I (26) Garcia, Spring 2007 © UCB Peer Instruction Answer A. Mem hierarchies were invented before (UNIVAC I wasn’t delivered ‘til 1951) B. If you know your computer’s cache size, you can often make your code run faster. C. Memory hierarchies take advantage of spatial locality by keeping the most recent data items closer to the processor. ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT A.“We are…forced to recognize the possibility of constructing a hierarchy of memories, each of which has greater capacity than the preceding but which is less accessible.” – von Neumann, 1946 B.Certainly! That’s call “tuning” C.“Most Recent” items  Temporal locality

CS61C L31 Caches I (27) Garcia, Spring 2007 © UCB Peer Instruction (2/2) Assume 1 instr/clock, delayed branch, 5 stage pipeline, forwarding, interlock on unresolved load hazards (after 10 3 loops, so pipeline full). Rewrite this code to reduce pipeline stages (clock cycles) per loop to as few as possible. Loop:lw $t0, 0($s1) addu $t0, $t0, $s2 sw $t0, 0($s1) addiu $s1, $s1, -4 bne $s1, $zero, Loop nop How many pipeline stages (clock cycles) per loop iteration to execute this code?

CS61C L31 Caches I (28) Garcia, Spring 2007 © UCB Peer Instruction (2/2) How long to execute? How many pipeline stages (clock cycles) per loop iteration to execute your revised code? (assume pipeline is full) Rewrite this code to reduce clock cycles per loop to as few as possible: Loop:lw$t0, 0($s1) addiu$s1, $s1, -4 addu$t0, $t0, $s2 bne$s1, $zero, Loop sw$t0, +4($s1) (no hazard since extra cycle) (modified sw to put past addiu)

CS61C L31 Caches I (29) Garcia, Spring 2007 © UCB And in Conclusion… We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible. So we create a memory hierarchy: each successively lower level contains “most used” data from next higher level exploits temporal & spatial locality do the common case fast, worry less about the exceptions (design principle of MIPS) Locality of reference is a Big Idea