Adversarial Search: Game Playing Reading: Chess paper.

Slides:



Advertisements
Similar presentations
Adversarial Search Chapter 6 Sections 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Advertisements

Adversarial Search Chapter 6 Section 1 – 4. Types of Games.
Adversarial Search We have experience in search where we assume that we are the only intelligent being and we have explicit control over the “world”. Lets.
Games & Adversarial Search Chapter 5. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent’s reply. Time.
This lecture topic: Game-Playing & Adversarial Search
February 7, 2006AI: Chapter 6: Adversarial Search1 Artificial Intelligence Chapter 6: Adversarial Search Michael Scherger Department of Computer Science.
Games & Adversarial Search
For Monday Read chapter 7, sections 1-4 Homework: –Chapter 4, exercise 1 –Chapter 5, exercise 9.
ICS-271:Notes 6: 1 Notes 6: Game-Playing ICS 271 Fall 2008.
1 CSC 550: Introduction to Artificial Intelligence Fall 2008 search in game playing  zero-sum games  game trees, minimax principle  alpha-beta pruning.
CS 484 – Artificial Intelligence
Adversarial Search Chapter 6 Section 1 – 4.
University College Cork (Ireland) Department of Civil and Environmental Engineering Course: Engineering Artificial Intelligence Dr. Radu Marinescu Lecture.
Adversarial Search Chapter 5.
COMP-4640: Intelligent & Interactive Systems Game Playing A game can be formally defined as a search problem with: -An initial state -a set of operators.
1 Game Playing. 2 Outline Perfect Play Resource Limits Alpha-Beta pruning Games of Chance.
Adversarial Search: Game Playing Reading: Chapter next time.
Lecture 12 Last time: CSPs, backtracking, forward checking Today: Game Playing.
Adversarial Search CSE 473 University of Washington.
Hoe schaakt een computer? Arnold Meijster. Why study games? Fun Historically major subject in AI Interesting subject of study because they are hard Games.
Adversarial Search Chapter 6.
Adversarial Search 對抗搜尋. Outline  Optimal decisions  α-β pruning  Imperfect, real-time decisions.
An Introduction to Artificial Intelligence Lecture VI: Adversarial Search (Games) Ramin Halavati In which we examine problems.
1 Adversarial Search Chapter 6 Section 1 – 4 The Master vs Machine: A Video.
G51IAI Introduction to AI Minmax and Alpha Beta Pruning Garry Kasparov and Deep Blue. © 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM.
Minimax and Alpha-Beta Reduction Borrows from Spring 2006 CS 440 Lecture Slides.
Game Playing CSC361 AI CSC361: Game Playing.
UNIVERSITY OF SOUTH CAROLINA Department of Computer Science and Engineering CSCE 580 Artificial Intelligence Ch.6: Adversarial Search Fall 2008 Marco Valtorta.
1 search CS 331/531 Dr M M Awais A* Examples:. 2 search CS 331/531 Dr M M Awais 8-Puzzle f(N) = g(N) + h(N)
Game-Playing Read Chapter 6 Adversarial Search. Game Types Two-person games vs multi-person –chess vs monopoly Perfect Information vs Imperfect –checkers.
ICS-271:Notes 6: 1 Notes 6: Game-Playing ICS 271 Fall 2006.
Game Tree Search based on Russ Greiner and Jean-Claude Latombe’s notes.
Games & Adversarial Search Chapter 6 Section 1 – 4.
Game Playing: Adversarial Search Chapter 6. Why study games Fun Clear criteria for success Interesting, hard problems which require minimal “initial structure”
ICS-270a:Notes 5: 1 Notes 5: Game-Playing ICS 270a Winter 2003.
Game Playing State-of-the-Art  Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in Used an endgame database defining.
CSC 412: AI Adversarial Search
CISC 235: Topic 6 Game Trees.
Adversarial Search CS30 David Kauchak Spring 2015 Some material borrowed from : Sara Owsley Sood and others.
Lecture 6: Game Playing Heshaam Faili University of Tehran Two-player games Minmax search algorithm Alpha-Beta pruning Games with chance.
Game Playing.
Game Playing Chapter 5. Game playing §Search applied to a problem against an adversary l some actions are not under the control of the problem-solver.
Game-playing AIs Part 1 CIS 391 Fall CSE Intro to AI 2 Games: Outline of Unit Part I (this set of slides)  Motivation  Game Trees  Evaluation.
Adversarial Search Chapter 6 Section 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Notes on Game Playing by Yun Peng of theYun Peng University of Maryland Baltimore County.
Introduction to Artificial Intelligence CS 438 Spring 2008 Today –AIMA, Ch. 6 –Adversarial Search Thursday –AIMA, Ch. 6 –More Adversarial Search The “Luke.
Games. Adversaries Consider the process of reasoning when an adversary is trying to defeat our efforts In game playing situations one searches down the.
1 Adversarial Search CS 171/271 (Chapter 6) Some text and images in these slides were drawn from Russel & Norvig’s published material.
For Wednesday Read chapter 7, sections 1-4 Homework: –Chapter 6, exercise 1.
Game Playing. Introduction One of the earliest areas in artificial intelligence is game playing. Two-person zero-sum game. Games for which the state space.
Adversarial Search Chapter Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent reply Time limits.
ARTIFICIAL INTELLIGENCE (CS 461D) Princess Nora University Faculty of Computer & Information Systems.
Adversarial Search Chapter 6 Section 1 – 4. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent reply Time.
Explorations in Artificial Intelligence Prof. Carla P. Gomes Module 5 Adversarial Search (Thanks Meinolf Sellman!)
Adversarial Search In this lecture, we introduce a new search scenario: game playing 1.two players, 2.zero-sum game, (win-lose, lose-win, draw) 3.perfect.
Adversarial Search Chapter 5 Sections 1 – 4. AI & Expert Systems© Dr. Khalid Kaabneh, AAU Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Chapter 5: Adversarial Search & Game Playing
ADVERSARIAL SEARCH Chapter 6 Section 1 – 4. OUTLINE Optimal decisions α-β pruning Imperfect, real-time decisions.
Chapter 5 Adversarial Search. 5.1 Games Why Study Game Playing? Games allow us to experiment with easier versions of real-world situations Hostile agents.
1 Chapter 6 Game Playing. 2 Chapter 6 Contents l Game Trees l Assumptions l Static evaluation functions l Searching game trees l Minimax l Bounded lookahead.
Adversarial Search and Game-Playing
PENGANTAR INTELIJENSIA BUATAN (64A614)
Adversarial Search Chapter 5.
Adversarial Search.
Tutorial 5 Adversary Search
Artificial Intelligence
Adversarial Search CS 171/271 (Chapter 6)
Games & Adversarial Search
Adversarial Search Chapter 6 Section 1 – 4.
Presentation transcript:

Adversarial Search: Game Playing Reading: Chess paper

2 Agenda  Review of game-playing approaches  A how-to example: Checkers  Your homework

3 Minimax Algorithm Alternate levels of tree represent MAX (computer) and MIN (opponent) Depth first search for optimal strategy for MAX Assume both players make optimal move at each point Back minimax values up the tree MAX MIN

4 Search Formulation  States: board configurations  Operators (Successor function): legal moves  Goal test: (for max) a terminal state with high utility  Utility function: numeric values for final states. E.g., win, loss, draw with values 1, - 1, 0

5

6 MAX MIN

7 MAX MIN

8 MAX MIN

9 MAX MIN 1

10 MAX MIN

11 MAX MIN

12 Move: A turn by P1 and response by P2 Ply: A level in the tree corresponding to a single turn Ply is used to specify how deep a program searches

13 Which values are necessary? XX

14  value is a lower-bound on the actual value of a MAX node  value is an upper-bound on actual value of a MIN node  ≤ 3  ≥ 3

15  ≤ 3  ≥ 3  ≤ 2  > β so no need to look further

16 Pruning Methods  Alpha-Beta pruning  Heuristic evaluation functions  Evaluate a board state to produce an estimate of the utility at end game  Order nodes by evaluation function results

17 Heuristics: evaluation functions  Bound the depth of search, and use an evaluation function to estimate value of current board configurations  E.g., Othello: #white pieces - #black pieces  E.g., Chess: Value of all white pieces – Value of all black pieces  Typical values from –infinity (lost) to +infinity (won) or [-1,+1]  turn non-terminal nodes into terminal leaves And, - pruning continues to apply -> Use expert knowledge and/or machine learning

18

19

20 Building a program to play checkers  Play the game: ml ml  What are good strategies?

21

22 The α-β algorithm

23 Suppose  We want to add in heuristic evaluation function  We want to specify how many ply the program will search  We want to make it specific to checkers  We want to order expansion of nodes by evaluation function