Some features of Single Layered Manganites La 1-x Sr 1+x MnO 4 G. Allodi, C. Baumann, B. Büchner, D. Cattani, R. De Renzi, P. Reutler.

Slides:



Advertisements
Similar presentations
Theory of probing orbitons with RIXS
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Level Splitting in Frustrated non-Kramers doublet systems Collin Broholm and Joost van Duijn Department of Physics and Astronomy Johns Hopkins University.
Magnetismo y Superconductividad: Principios fundamentales, sistemas experimentales y líneas de investigación en el laboratorio de bajas temperaturas Luis.
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 George Sawatzky.
Inelastic Magnetic Neutron Scattering on the Spin-Singlet Spin- ½ FCC System Ba 2 YMoO 6 Jeremy P. Carlo Canadian Neutron Beam Centre, National Research.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Hidden Symmetries and Their Consequences in the Hubbard Model of t 2g Electrons* A. B. HARRIS In collaboration with Dr. T. Yildirim, (NIST, Gaithersburg,
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
V. Pomjakushin I.M.Frank Laboratory of Neutron Physics, JINR, Dubna In collaboration with: A. Balagurov Frank Laboratory of Neutron Physics, JINR, Dubna.
Lattice instability in frustrated systems Maxim Mostovoy MPI, Stuttgart Groningen, April 22, 2004 D. Khomskii, Cologne J. Knoester, Groningen R. Moessner,
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Coordination Chemistry Bonding in transition-metal complexes.
Effect of iron doping on electrical, electronic and magnetic properties of La 0.7 Sr 0.3 MnO 3 S. I. Patil Department of Physics, University of Pune March.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
                  Electrical transport and magnetic interactions in 3d and 5d transition metal oxides Kazimierz Conder Laboratory for Developments and.
Placing electrons in d orbitals (strong vs weak field)
Condensed Matter Physics Sharp
K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING.
H. C. Ku Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. with: B. N. Lin, P. C. Guan, Y. C. Lin, T. Y. Chiu, M. F. Tai.
Coordination Chemistry Bonding in transition-metal complexes.
Magnetism III: Magnetic Ordering
Magnetism and Magnetic Materials
Blaubeuren 2006 Relaxation mechanisms in exchange coupled spin systems – I Line broadening and the Kubo-Tomito approach Joachim Deisenhofer Université.
Seillac, 31 May Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Frank Bridges, UCSC, DMR Mn La/Ca O Figure 1 Figure 2 Local Structure Studies of La 1-x Ca x MnO 3 : Evidence for Magnetic Dimers We have used.
Chemistry Solid State Chemistry Transition Metal Oxide Rock Salt and Rutile: Metal-Metal Bonding Chemistry 754 Solid State Chemistry Lecture 23 May.
Magnetism in Azurite Studied by Muon Spin Rotation (a status report) M. Kraken, S. Süllow and F.J. Litterst IPKM, TU Braunschweig A.U.B. Wolter, IFW Dresden.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
On the spin orientation 1. Qualitative rules for predicting preferred spin orientations? 2. Spin orientations of Sr 3 NiIrO 6, Sr 2 IrO 4, Ba 2 NaOsO 6.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
The 5th Korea-Japan-Taiwan Symposium on Strongly Correlated Electron System Manybody Lab, SKKU Spontaneous Hexagon Organization in Pyrochlore Lattice Jung.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Magnetic states of lightly hole- doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy Kitaoka Lab Kaneda Takuya F. Coneri, S.
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Magnetic Neutron Diffraction the basic formulas
LIT-JINR Dubna and IFIN-HH Bucharest
The Electronic Structure of the Ti4O7 Magneli Phase
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
The Structure and Dynamics of Solids
Ligand field theory considers the effect of different ligand environments (ligand fields) on the energies of the d- orbitals. The energies of the d orbitals.
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
Spin Waves in Metallic Manganites Fernande Moussa, Martine Hennion, Gaël Biotteau (PhD), Pascale Kober-Lehouelleur (PhD) Dmitri Reznik, Hamid Moudden Laboratoire.
Magnetism and Magnetic Materials DTU (10313) – 10 ECTS KU – 7.5 ECTS Sub-atomic – pm-nm With some surrounding environment and a first step towards the.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Orbital Ordering and Exchange Interactions in RMnO 3 Perovskites J. B. Goodenough, U.T. Austin DMR
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
GNSF: KITP: PHY Krakow, June 2008 George Jackeli Max-Planck Institute for Solid State Research, Stuttgart In collaboration with:
Evolution of the orbital Peierls state with doping
Electrons-electrons interaction
M. Hennion, S. Petit, F. Moussa, D. Lamago LLB-Saclay
Oxide Heterostructure
Hyperfine interaction studies in Manganites
Anisotropic superconducting properties
Theory of Magnetic Moment in Iron Pnictides (LaOFeAs) Jiansheng Wu (UIUC), Philip Phillips (UIUC) and A.H.Castro Neto (BU) arxiv:
Jahn-Teller distortion in manganites
DEMONSTRATION EXPERIMENTS
Presentation transcript:

Some features of Single Layered Manganites La 1-x Sr 1+x MnO 4 G. Allodi, C. Baumann, B. Büchner, D. Cattani, R. De Renzi, P. Reutler

Layered Structure SE 1 -x A 1+x MnO 4 Tetragonal I4/mmm b c a Ionic description of Mn-ions in a crystal field 3z 2 -r 2 x 2 -y 2 xz yz xy Orbital states of Jahn-Teller active ions are discribed as linear superpositions !!!

Layered Structure SE 1 -x A 1+x MnO 4 Tetragonal I4/mmm b c a :Mn 3+ a b c :Mn 4+ a b c Moritomo, PRB 51, 3297 (95) Bao, SSC 98, 55 (96) Bao, SSC 98, 55 (96)

P. Reutler, unpublished data, LLB Paris P. Reutler, unpublished data, LLB Paris Crystallographic aspects Distortion Strongly elongated octahedra D>1 for all x For comparison LaMnO 3 ( PRB57, 3189 (1998) ) Mn-O(1) (Å) 1.968, 1907 Mn-O(2) (Å) Flop from out of plane to inplane orbitals at 1/8<x<1/4

d 3z 2 -r 2 unoccupied d xy,xz,yz Between two empty states no electron hopping possible localized  localized d 3z 2 -r 2 unoccupied d xy,xz,yz non-vanishing transfer integral Electron hopping possible delocalized  delocalized +d x 2 -y 2 or others Electronic origin for the transfer into orbitals lying in the ab- plane Neither d 3z²-r² nor d x²-y² states are true eigenstates

Electronic Properties Overall insulating behaviour No very CMR

FM exchange between Mn 3+ and Mn 4+ on delocalization La 1 Sr 1 MnO 4 (x=0) Under holedoping AFM exchange between two occupied t 2 g orbitals AFM? FM? Goodenough-Anderson-Kanamori Rules: AFM exchange between Mn 3+ and Mn 4+ on localized holes unoccupied t 2g occupied t 2g AFM !! Hopping possibile? Magnetism of La 1-x Sr 1+x MnO 4

AFM of La 1 Sr 1 MnO 4 and La 7/8 Sr 9/8 MnO 4 ( )+x(1 1 0) * 150 magnetic reflections taken at 5C.2, LLB, France ** high resolution powder neutron diffraction at 3T.2, LLB, France P. Reutler, unpublished Neutron diffraction C-type AFM In a body cell no magnetic couplings to next planes FRUSTRATION La 1 Sr 1 MnO 4 T N =127 K; 3.20* µ B /Mn La 7/8 Sr 9/8 MnO 4 T N ~65 K; 2.4** µ B /Mn

AFM of La 1 Sr 1 MnO 4 and La 7/8 Sr 9/8 MnO 4 B  c : nearly free spins at low temperatures B||c :only much smaller features at higher temperatures free xy- spins free xy- spins ~0.2 µ B /Mn La 1 Sr 1 MnO 4 La 7/8 Sr 9/8 MnO 4

C-Typ AFM longrange Order xy-Momente (0.2 µ B /Mn) ● Delocaliztion, but no metallicity ● Long range antiferromagnetism and simultaniously perpedincular ● Quasi free spins perpedincular to ordered moments Canting of AFM ordered spinmoments

μSR of La 7/8 Sr 9/8 MnO 4 Three contributions: - Slowly decaying Backround - Precession Ordered moments - NON DETECTED PARTdue to very fast depolarizing signal quasi-static disordered moments ~60% missing initial polarisation 4.2K TNTN The magnetism of La 7/8 Sr 9/8 MnO 4 is intrinsicallyinhomogeneous first datum

The rest of of La 1+x Sr 1-x MnO 4

Shortrange static magnstism in La 0.6 Sr 1.4 MnO 4 by Muons Depolarization Curves described by Kubo-Tojabe-Function for T<18K

Zero field 55 Mn-NMR

Shortrange static magnstism in La 3/4 Sr 5/4 MnO 4 by Muons

Austauschwechselwirkung FM Austausch zwischen Mn 3+ und Mn 4+ bei Deloklisierung La 1 Sr 1 MnO 4 (x=0) Lochdotierung AFM Austausch zwischen zwei besetzen t 2 g Orbitalen AFM? FM? Goodenough-Anderson-Kanamori Regeln: AFM Austausch zwischen Mn 3+ und Mn 4+ bei lokalisierten Löchern unbesetzes t 2g besetzes t 2g AFM !! Hopping möglich?

Collective order of correlated orbitals Orbital form is parameterized by  on two sublattices A,B Order of orthogonal Orbitals on two sublattices A,B   collective order dynamic order  is fixed by further mechanism (on site anisotropy) Energy degeneracy for all  See also QF and orbital order: van den Brink, PRB 59, 6795 (99); Feiner, PRL 78, 2799 (97)