Contour statistics, depolarization canals and interstellar turbulence Anvar Shukurov School of Mathematics and Statistics, Newcastle, U.K.

Slides:



Advertisements
Similar presentations
Modified and pure dynamo field in nearby galaxies Krzysztof Chyży (Jagiellonian University, Kraków)
Advertisements

NASSP Masters 5003F - Computational Astronomy Lecture 10 Today I plan to cover: –A bit more about noise temperatures; –Polarized radio signals;
S-PASS, a new view of the polarized sky Gianni Bernardi SKA SA On behalf of the S-PASS team CMB2013, Okinawa, June th 2013.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
Primary results of polarization survey of large-SNRs at 6cm Li Xiao, XiaoHui Sun, Chen Wang, WeiBin Shi, Wolfgang Reich, JinLin Han Partner Group of MPIfR.
Plasmas in Space: From the Surface of the Sun to the Orbit of the Earth Steven R. Spangler, University of Iowa Division of Plasma Physics, American Physical.
Observations of turbulence in the magneto-ionized ISM on subparsec scales Marijke Haverkorn.
Study of Cosmic Magnetic Fields with Square Kilometer Array Keitaro Takahashi Nagoya University workshop 2010.
A Polarization Study of the University of Michigan BL Lac Object Sample Askea O'Dowd 1, Denise Gabuzda 1, Margo Aller University College Cork 2 -
The Sino-German 6cm polarization survey of the Galactic plane Total intensity Polarized intensity Xiaohui Sun NAOC.
3-D Simulations of Magnetized Super Bubbles J. M. Stil N. D. Wityk R. Ouyed A. R. Taylor Department of Physics and Astronomy, The University of Calgary,
Polarization 2005, Orsay, 13/09/2005 Depolarization canals in Milky Way radio maps Anvar Shukurov and Andrew Fletcher School of Mathematics and Statistics,
Radio Astronomy And The Spiral Structure Of The Milky Way Jess Broderick Supervisor: Dr George Warr.
Particles and Fields in Lobes of Radio Galaxies Naoki Isobe (NASDA, MAXI Mission) Makoto Tashiro (Saitama Univ.) Kazuo Makishima (Univ. of Tokyo) Hidehiro.
T.G.Arshakian MPI für Radioastronomie (Bonn) Exploring the weak magnetic fields with LOFAR.
Radio jets as decelerating relativistic flows Robert Laing (ESO)
Galactic Magnetic Field Research with LOFAR Wolfgang Reich Max-Planck-Institut für Radioastronomie Bonn, Germany.
Annalisa Bonafede PhD student at IRA Radio Astronomy Institute Bologna (Italy) With: L. Feretti, G. Giovannini, M. Murgia, F. Govoni, G. B.Taylor, H. Ebeling,
Probing Magnetic Field Structure in GRBs Through Dispersive Plasma Effects on the Afterglow Polarization Amir Sagiv, Eli Waxman & Abraham Loeb GRBs in.
Multi-Frequency Circular Polarization Measurements of the Quasar 3C279 At Centimeter Wavelengths H.D. Aller and M.F. Aller (U. of Michigan) Introduction.
Wavelet-based Faraday Rotation Measure Synthesis (funded by RFBR & DFG) Peter Frick, Rodion Stepanov, Institute of Continuous Media Mechanics, Perm, Russia.
Direct Measurement of a Magnetic Field at z=0.692 Art Wolfe Regina Jorgenson: IOA Tim Robishaw: UCB Carl Heiles:UCB Jason X. Prochaska:UCSC.
Measuring the Magnetic Field in the Sun and the Interstellar Medium Steven R. Spangler… University of Iowa.
Low frequency sky surveys with the Murchison Widefield Array (MWA) Gianni Bernardi Harvard-Smithsonian Center for Astrophysics SKA SA project/MeerKAT observatory.
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The "26-m Polarization Survey" ( ) MAIK WOLLEBEN.
Radio Remote Sensing of the Corona and the Solar Wind Steven R. Spangler University of Iowa.
Polarization Surveys with the DRAO 26-m Telescope at 1.4 GHz Maik Wolleben, T. Landecker, O. Davison Dominion Radio Astrophysical Observatory W. Reich,
Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 Sensitivity Joan Wrobel.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
CMB & Foreground Polarisation CMB 2003 Workshop, Minneapolis Carlo Baccigalupi, SISSA/ISAS.
Kinematics of parsec-scale radio jet in 3C48 Tao An 1, In collaboration with X.Y.Hong 1, M.J.Hardcastle 2, T.Venturi 3, D.Worrall 2,T.J.Pearson 4, Z.-Q.Shen.
ATUC Science Meeting 24 th Oct 2011 Radio emission from CU Virginis Kitty Lo Collaborators: Justin Bray, George Hobbs, Tara Murphy, Bryan Gaensler, Don.
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
Galactic Radioemission – a problem for precision cosmology ? Absolute Temperatures at Short CM-Waves with a Lunar Radio Telescope Wolfgang Reich Max-Planck-Institut.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Kashi1 Radio continuum observations of the Sombrero galaxy NGC4594 (M104) and other edge-on spirals Marita Krause MPIfR, Bonn Michael Dumke ESO,
Radio Waves Interaction With Interstellar Matter
Unusual radio BAL quasar Chris Benn 1, Ruth Carballo 2, Joanna Holt 3, Mario Vigotti 4, Ignacio Gonz á lez-Serrano 2, Karl-Heinz Mack 4, Rick.
ABSTRACT April 2000 CMVA observations of the sources 3C273 and 3C279 resulted in the first VLBI total intensity and linear polarization images of any source.
Barrel or Bilateral-shaped SNRs Jiangtao Li May 6th 2009.
OH maser sources in W49N: probing differential anisotropic scattering with Zeeman pairs desh Raman Research Institute, Bangalore + Miller Goss, Eduardo.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Strength and Structure of the Coronal Magnetic Field Steven R. Spangler University of Iowa.
Radio Sounding of the Near-Sun Plasma Using Polarized Pulsar Pulses I.V.Chashei, T.V.Smirnova, V.I.Shishov Pushchino Radio Astronomy Obsertvatory, Astrospace.
Dependence of the Integrated Faraday Rotations on Total Flux Density in Radio Sources Chen Y.J, Shen Z.-Q.
Magnetic Fields in Supernova Remnants Kashi & Urumqi, 2005 Sept. 7 th -14 th.
Measuring the Near-Nothingness of Interstellar Space with Radio Astronomy Steven R. Spangler University of Iowa.
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Supernova remnants: evolution, statistics, spectra.
Probing Coronal Mass Ejections with Faraday Rotation Measurements Steven R. Spangler and Catherine A. Whiting University of Iowa.
Searching for the Synchrotron Cosmic Web with the Murchison Widefield Array Bryan Gaensler Centre for All-sky Astrophysics / The University of Sydney Natasha.
Gabuzda, Murray & Cronin astro-ph/
Is the Inner Radio Jet of BL Lac Precessing? R. L. Mutel University of Iowa Astrophysics Seminar 17 September 2003.
Observations of SNR G at 6cm JianWen Xu, Li Xiao, XiaoHui Sun, Chen Wang, Wolfgang Reich, JinLin Han Partner Group of MPIfR at NAOC.
Cosmic Masers Chris Phillips CSIRO / ATNF. What is a Maser? Microwave Amplification by Stimulated Emission of Radiation Microwave version of a LASER Occur.
The large-scale structure of the Galactic magnetic field & Faraday tomography --desh Raman Research Institute, Bangalore.
Eyes on the Polarized Sky, Feet on the Ground
Faraday Rotation as a Diagnostic of Cosmic Magnetic Fields
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
A Turbulent Local Environment
Thin, Cold Strands of Hydrogen in the Riegel-Crutcher Cloud
X-ray and Radio Connections
With contributions from Shea Brown & Damon Farnsworth, UMN
With contributions from Shea Brown & Damon Farnsworth, UMN
T.G.Arshakian MPI für Radioastronomie (Bonn)
Instructor: Gregory Fleishman
SKADS Polarization Simulations The MPIfR team (Milky Way & star-forming galaxies): Tigran Arshakian, Rainer Beck, Marita Krause, Wolfgang Reich, XiaoHui.
Linear and Circular Polarization from Sagittarius A*
Presentation transcript:

Contour statistics, depolarization canals and interstellar turbulence Anvar Shukurov School of Mathematics and Statistics, Newcastle, U.K.

Synchrotron emission in interstellar medium Total intensity Polarized intensity + polarization angle 

Polarization and depolarization P = p e 2i , complex polarization, p = P/I p : degree of polarization (fraction of the radiation flux that is polarized) ;  : polarization angle Depolarization: superposition of two polarized waves,  1 =  2 +  /2  P 1 + P 2 = 0  Faraday rotation:  =  0 + RM  2 Faraday rotation can depolarize radiation += 0

Depolarization canals in radio maps of the Milky Way  Narrow, elongated regions of zero polarized intensity  Abrupt change in  by  /2 across a canal  Position and appearance depend on the wavelength  No counterparts in total emission

Gaensler et al., ApJ, 549, 959, ATCA, = 1.38 GHz ( = 21.7 cm), W = 90”  70”.  Narrow, elongated regions of zero polarized intensity

 Abrupt change in  by  /2 across a canal Haverkorn et al. A&A 2000  P Gaensler et al., ApJ, 549, 959, 2001   

 Position and appearance depend on the wavelength Haverkorn et al., AA, 403, 1031, 2003 Westerbork, = MHz, W = 5’

 No counterparts in total emission Uyaniker et al., A&A Suppl, 138, 31, Effelsberg, 1.4 GHz, W = 9.35’

No counterparts in I  propagation effects (not produced by any gas filaments or sheets) Sensitivity to  Faraday depolarization Potentially rich source of information on ISM

Complex polarization ( // line of sight)  = synchrotron emissivity, B = magnetic field, = wavelength, n = thermal electron number density, Q, U, I = Stokes parameters

Fractional polarization p, polarization angle  and Faraday rotation measure RM : Faraday depth to distance z : Faraday depth:

Differential Faraday rotation

Uniform slab, thickness 2h, F = 2KnB z h 2 :

Implications Canals: | F | =  n  | RM | = F / (2 2 )=  n/(2 2 )  Canals are contours of RM(x), an observable quantity F(x) & RM  Gaussian random functions What is the mean separation of contours of a (Gaussian) random function?

The problem of overshoots A random function F(x). What is the mean separation of positions x i such that F(x i ) = F c (= const) ?

 f (F) = the probability density of F;  f (F, F' ) = the joint probability density of F and F' = dF/dx; 

Great simplification: Gaussian random functions (and F  a GRF!) F(x) and F'(x) are statistically independent,

Contours of a random function in 2D

Useful references Sveshnikov A. A., 1966, Applied Methods in the Theory of Random Functions (Pergamon Press: Oxford) Vanmarcke E., 1983, Random Fields: Analysis and Synthesis (MIT Press: Cambridge, Mass.) Longuet-Higgins M. S., 1957, Phil. Trans. R. Soc. London, Ser. A, 249, 321 Ryden, 1988, ApJ, 333, L41 Ryden et al., 1989, ApJ, 340, 647

Contours around high peaks

Tend to be closed curves (around x = 0). F (0) =  F, >> 1;  F (0) = 0. For a Gaussian random function, i.e., the mean profile F ( r ) around a high peak follows the autocorrelation function (Peebles, 1984, ApJ 277, 470; Bardeen et al., 1986, ApJ 304, 15)

Mean separation of canals (Shukurov & Berkhuijsen MN 2003) l T  0.6 pc at L = 1 kpc  Re (RM) = (l 0 /l T ) 2  10 4  10 5

Conclusions The nature of depolarization canals seems to be understood. They are sensitive to important physical parameters of the ISM (autocorrelation function of RM). New tool for the studies of the ISM turbulence: contour statistics (contours of RM, I, P, ….) Details in: Fletcher & Shukurov, astro-ph/