October 3, 2003IFIC, UVEG-CSIC A road map to solar fluxes, osc. param., and test for new physics Carlos Pena Garay IAS ~

Slides:



Advertisements
Similar presentations
Standard Solar Model Calculation of Neutrino Fluxes Aldo Serenelli Institute for Advanced Study NOW 2006 Conca Specchiulla 11-Sept-2006.
Advertisements

Solar neutrinos Recent results Daniel Vignaud (APC Paris) Neutrinos at the forefront of particle physics and astrophysics 23 October 2012.
Teppei Katori, Indiana University1 PRD74(2006) Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Takaaki Kajita ICRR, Univ. of Tokyo Nufact05, Frascati, June 2005.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
1 Gianni Fiorentini Solar Neutrinos The previous millenium: e disappearance An appearance experiment SNO: An appearance experiment Solar neutrinos undergo.
Neutrino oscillations and non- standard neutrino-matter interactions (NSI) Cecilia Lunardini INT & UW department of Physics, Seattle A.Friedland, C.L.
1 The pp-chain and the CNO-cycle after KamLAND Solar neutrinos after SNO and KamLAND The Boron flux The Beryllium flux Nuclear physics of the pp-chain.
Neutrino Physics - Lecture 5 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
Nuclear reactions and solar neutrinos
1 Nuclear fusion in the Sun The spies of solar interior: –neutrinos –helioseismology What can be learnt about the Sun? What can be learnt about nuclear.
A LOOK INTO THE PHYSICS OF NEUTRINOS J A Grifols, UAB Viña del Mar, Dec 06.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
1 B.Ricci* What have we learnt about the Sun from the measurement of 8B neutrino flux? Experimental results SSM predictions SSM uncertainties on  (8B)
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Shoei NAKAYAMA (ICRR) for Super-Kamiokande Collaboration December 9, RCCN International Workshop Effect of solar terms to  23 determination in.
Solar Neutrinos Dr Robert Smith Astronomy Centre University of Sussex.
GNO and the pp - Neutrino Challenge  T.Kirsten/GNO Till A. Kirsten Max-Planck-Institut für Kernphysik, Heidelberg for the GNO Collaboration NDM03 Nara/Japan.
Recent Results from Super-Kamiokande and Sudbury Neutrino Observatory R. D. McKeown California Institute of Technology January 17, 2004 IHEP Beijing.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
Osamu Yasuda Tokyo Metropolitan University Model independent analysis of New Physics interactions and implications for long baseline experiments INTERNATIONAL.
Michael Smy UC Irvine Solar and Atmospheric Neutrinos 8 th International Workshop on Neutrino Factories, Superbeams & Betabeams Irvine, California, August.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
Solar Neutrino Experiments A Review The CAP'09 Congress Moncton, 7-10 June, 2009 Alain Bellerive On behalf of the SNO Collaboration Carleton University,
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE NuFact’07 Okayama, Japan Georgia Karagiorgi, Columbia University August 10, 2007.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
The Standard Solar Model and Experiments Predictions versus experiments Uncertainties in predictions Challenges and open questions BP00: astro-ph/
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
Tests of non-standard neutrino interactions (NSI) Cecilia Lunardini Institute for Nuclear Theory University of Washington, Seattle.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
Neutrino Pendulum A mechanical model for 3-flavor Neutrino Oscillations Michael Kobel (TU Dresden) Obertrubach, Schule für Astroteilchenphysik.
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
1 Luca Stanco, INFN-Padova (for the OPERA collaboration) Search for sterile neutrinos at Long-BL The present scenario and the “sterile” issue at 1 eV mass.
SAGE: status and future SAGE: V.N. Gavrin Institute for Nuclear Research of the Russian Academy of Sciences, Moscow.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Solar Neutrino Results from SNO
Sensitivity on sterile neutrinos with sources in Borexino A.Ianni Phys. Dept., Princeton May 9th, 2011.
October 14th, 2006LONU-LENS, Virginia Tech Solar Luminosity by Neutrinos Solar Luminosity by Neutrinos Carlos Pena Garay IFIC, Valencia ~
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
A model for large non-standard interactions of neutrinos leading to the LMA-dark solution Yasaman Farzan IPM, Tehran.
Neutrino Physics II Hitoshi Murayama University of Pisa February 25, 2003.
A. Y. Smirnov SNO: establishing flavor conversion of the Solar neutrinos BOREXINO direct measurement of the pp-neutrinos 2004 – KAMLAND.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Solar Neutrinos on the beginning of 2017
Solar Neutrino Problem
“Solar” Neutrino Oscillations (Dm2, q12)
Solar neutrinos: form their production to their detection
Sudbury Neutrino Observatory
7. Internal structure. II.
Davide Franco for the Borexino Collaboration Milano University & INFN
DUNE as the Next-Generation Solar Neutrino Experiment
Some Nuclear Physics with Solar Neutrinos
Solar Neutrino Flux -- in 3 lines
Presentation transcript:

October 3, 2003IFIC, UVEG-CSIC A road map to solar fluxes, osc. param., and test for new physics Carlos Pena Garay IAS ~

Why perform low-energy solar neutrino experiments? Update : SNO 2 nd phase data included

Strategy - Global analyses of data : Indep. on SSM fluxes Bahcall, Krastev, PRD53 (1996) Garzelli, Giunti, PRD65 (2002) 1995 : Chlorine, SAGE, GALLEX, Kamiokande Large uncertainties of fluxes from neutrino data 2001 : Chlorine, SAGE, GALLEX, SK, SNO CC Bayesian Analysis : 5% p-p determination at 90% CL 2001 : pp SSM analysis of pp measurement Nakahata, NOON 2001

Neutrino spectrum

S + K Solar + KamLAND : Data 1 Chorine Sage + Gallex/GNO Super-Kamiokande SNO I CC* SNO I NC* SNO I ES* KamLAND * undistorted spectrum assumed 1 SNO II CC SNO II NC SNO II ES

S + K : Global analyses Global analyses : Variations on a theme - B free - B, Be free - All free - All free + lum - - Cl, - Ga

LMA : Boron free analysis

LMA

CHOOZ + ATM :

If nuclear fusion reactions among light elements are responsible for solar energy generation Spiro, Vignaud, PLB (1990) determined by differences of nuclear masses independent of details of solar model at 1:10 4 Bahcall, PRC (2002) Luminosity constraint

Global : Variations on a theme - S + K : All free + lum Amazing result ! Large uncertainty ! Luminosity constraint is relevant ! - S+ K : All free

LMA : Other analyses - S + K : All free + lum – Ga Data don’t understand Be neutrinos ! - S + K : All free + lum – Cl Do we really understand Be neutrinos?

LMA : Other determinations - S + K : All free - luminosity from neutrino data Bahcall, Gonzalez-Garcia, CPG, PRL (2003) - S + K : All free + lum

LMA : Predictions for Borexino - S + K : All free + lum Do we really understand Be neutrinos? - S + K : B free

S + K 3 yr

Expected at Borexino [Be] = % [Be] = %

Unexpected at low energy ? -NC NSI : Modified matter effects Fogli et al (2002) Berezhiani et al (2001) Davidson et al (2003) -Sterile : With low mass scale Berezinsky et al (2003) de Holanda, Smirnov (2003)

Expected : pp measurement [pp]= % [pp]= %

Summary

7 Experiments; 34 years; 0.01% of the flux. A solar neutrino “opportunity”; not a problem.

Free fluxes: with luminosity constraint

Why measure low-energy solar `s? (today) Unique test of stellar fusion reactions Test for vacuum-matter transition Measure solar luminosity via `s Explore for new physics (steriles, NSI)

Conclusions Next I SNO 2 nd phase - Status of maximal mixing - Matter effects Next I KamLAND reactor : determination Next II Low energy : challenge % of solar neutrinos E < 5 MeV - Redundancy + improvement : Identify the unexpected - Vacuum av. osc. - Luminosity constraint + [ Be] 5% + [p-p] 1-3% 7

:Significant improvement But… SSM dependent + p-p (pep) measurement : SSM Nakahata, NOON 2001

S + K 3 yr : S + K 3 yr + [Be] 5 % Larger unc. than SSM Smaller unc. than SSM !!! Higher sensitivity to pp/pep: Luminosity constraint

: Significant improvement and… SSM independent at < 0.01 % + p-p (pep) measurement

7 Be measurement at 5 % Not improved But !

Better sensibility Small CS uncertainty [X] ~ P CC ee [X] ~ P + f (1-P ) ee ee Low Energy exps : ES, CC