CHAPTER 3: Statistical Description of Data

Slides:



Advertisements
Similar presentations
Chapter 3, Numerical Descriptive Measures
Advertisements

Introduction to Summary Statistics
Descriptive Statistics
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Basic Business Statistics (10th Edition)
© 2002 Prentice-Hall, Inc.Chap 3-1 Basic Business Statistics (8 th Edition) Chapter 3 Numerical Descriptive Measures.
Calculating & Reporting Healthcare Statistics
Chap 3-1 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 3 Describing Data: Numerical.
Descriptive Statistics A.A. Elimam College of Business San Francisco State University.
Descriptive Statistics – Central Tendency & Variability Chapter 3 (Part 2) MSIS 111 Prof. Nick Dedeke.
B a c kn e x t h o m e Parameters and Statistics statistic A statistic is a descriptive measure computed from a sample of data. parameter A parameter is.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 2-1 Statistics for Business and Economics 7 th Edition Chapter 2 Describing Data:
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
1 Pertemuan 02 Ukuran Numerik Deskriptif Matakuliah: I0262-Statistik Probabilitas Tahun: 2007.
Basic Business Statistics 10th Edition
B a c kn e x t h o m e Classification of Variables Discrete Numerical Variable A variable that produces a response that comes from a counting process.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 3-1 Introduction to Statistics Chapter 3 Using Statistics to summarize.
Coefficient of Variation
© 2003 Prentice-Hall, Inc.Chap 3-1 Business Statistics: A First Course (3 rd Edition) Chapter 3 Numerical Descriptive Measures.
Chap 3-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 3 Describing Data: Numerical Statistics for Business and Economics.
Describing Data: Numerical
Numerical Descriptive Measures
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 3-1 Chapter 3 Numerical Descriptive Measures Statistics for Managers.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Numerical Descriptive Techniques
Chapter 3 – Descriptive Statistics
JDS Special Program: Pre-training1 Basic Statistics 01 Describing Data.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Descriptive Statistics: Numerical Methods.
© Copyright McGraw-Hill CHAPTER 3 Data Description.
Modified by ARQ, from © 2002 Prentice-Hall.Chap 3-1 Numerical Descriptive Measures Chapter %20ppts/c3.ppt.
1 1 Slide Descriptive Statistics: Numerical Measures Location and Variability Chapter 3 BA 201.
Chapter 3 Descriptive Statistics: Numerical Methods Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Describing Behavior Chapter 4. Data Analysis Two basic types  Descriptive Summarizes and describes the nature and properties of the data  Inferential.
Descriptive Statistics: Numerical Methods
STAT 280: Elementary Applied Statistics Describing Data Using Numerical Measures.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 PUAF 610 TA Session 2. 2 Today Class Review- summary statistics STATA Introduction Reminder: HW this week.
Chapter 2 Describing Data.
Biostatistics Class 1 1/25/2000 Introduction Descriptive Statistics.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 3 Descriptive Statistics: Numerical Methods.
Lecture 3 Describing Data Using Numerical Measures.
INVESTIGATION 1.
Chap 3-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 3 Describing Data Using Numerical.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 3-1 Chapter 3 Numerical Descriptive Measures Business Statistics, A First Course.
LECTURE CENTRAL TENDENCIES & DISPERSION POSTGRADUATE METHODOLOGY COURSE.
Data Summary Using Descriptive Measures Sections 3.1 – 3.6, 3.8
Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 3-1 Business Statistics, 4e by Ken Black Chapter 3 Descriptive Statistics.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
MODULE 3: DESCRIPTIVE STATISTICS 2/6/2016BUS216: Probability & Statistics for Economics & Business 1.
1 STAT 500 – Statistics for Managers STAT 500 Statistics for Managers.
Statistical Methods © 2004 Prentice-Hall, Inc. Week 3-1 Week 3 Numerical Descriptive Measures Statistical Methods.
Chapter 6: Descriptive Statistics. Learning Objectives Describe statistical measures used in descriptive statistics Compute measures of central tendency.
Statistics -Descriptive statistics 2013/09/30. Descriptive statistics Numerical measures of location, dispersion, shape, and association are also used.
Descriptive Statistics ( )
Business and Economics 6th Edition
Chapter 3 Describing Data Using Numerical Measures
Descriptive Statistics: Numerical Methods
Averages and Variation
Descriptive Statistics
Chapter 3 Describing Data Using Numerical Measures
Numerical Descriptive Measures
Descriptive Statistics
Descriptive Statistics: Numerical Methods
BUSINESS MATHEMATICS & STATISTICS.
MBA 510 Lecture 2 Spring 2013 Dr. Tonya Balan 4/20/2019.
Business and Economics 7th Edition
Presentation transcript:

CHAPTER 3: Statistical Description of Data to accompany Introduction to Business Statistics fourth edition, by Ronald M. Weiers Modified from a Presentation by Priscilla Chaffe-Stengel Donald N. Stengel © 2002 The Wadsworth Group

Introduction Covers numerical measures used as descriptive statistics Box plots (a.k.a. box-and-whisker plots) are introduced (separate vignette) Not all topics in the text will be covered in this vignette

Chapter 3 - Learning Objectives Describe data using measures of central tendency and dispersion: for a set of individual data values, and for a set of grouped data. Use the computer to visually represent data. Use the coefficient of correlation to measure association between two quantitative variables. © 2002 The Wadsworth Group

Shape – Center - Spread When we gather data, we want to uncover the “information” in it. One easy way to do that is to think of: “Shape –Center- Spread” Shape – What is the shape of the histogram? Center – What is the mean or median? Spread – What is the range or standard deviation? Chapter 2 was the graphical approach Chapter 3 uses numerical measures

Chapter 3 - Key Terms Measures of Central Tendency, The Center Mean µ, population; , sample Weighted Mean Median Mode (Note comparison of mean, median, and mode) © 2002 The Wadsworth Group

Chapter 3 - Key Terms The Spread Measures of Dispersion, Range Variance (Note the computational difference between s2 and s2.) Standard deviation Interquartile range © 2002 The Wadsworth Group

Chapter 3 - Key Terms Measures of Relative Position Quantiles Quartiles Percentiles

Chapter 3 - Key Terms Measures of Association Coefficient of correlation, r Direction of the relationship: direct (r > 0) or inverse (r < 0) Strength of the relationship: When r is close to 1 or –1, the linear relationship between x and y is strong. When r is close to 0, the linear relationship between x and y is weak. When r = 0, there is no linear relationship between x and y. Coefficient of determination, r2 The percent of total variation in y that is explained by variation in x. © 2002 The Wadsworth Group

The Center: Mean Mean Arithmetic average = (sum all values)/# of values Population: µ = (Sxi)/N Sample: = (Sxi)/n Be sure you know how to get the value easily from your calculator and computer softwares. Problem: Calculate the average number of truck shipments from the United States to five Canadian cities for the following data given in thousands of bags: Montreal, 64.0; Ottawa, 15.0; Toronto, 285.0; Vancouver, 228.0; Winnipeg, 45.0 (Ans: 127.4) x © 2002 The Wadsworth Group

The Center: Weighted Mean When what you have is grouped data, compute the mean using µ = (Swixi)/Swi Problem: Calculate the average profit from truck shipments, United States to Canada, for the following data given in thousands of bags and profits per thousand bags: Montreal 64.0 Ottawa 15.0 Toronto 285.0 $15.00 $13.50 $15.50 Vancouver 228.0 Winnipeg 45.0 $12.00 $14.00 (Ans: $14.04 per thous. bags) © 2002 The Wadsworth Group

The Center: Median To find the median: 1. Put the data in an array. 2A. If the data set has an ODD number of numbers, the median is the middle value. 2B. If the data set has an EVEN number of numbers, the median is the AVERAGE of the middle two values. (Note that the median of an even set of data values is not necessarily a member of the set of values.) The median is particularly useful if there are outliers in the data set, which otherwise tend to sway the value of an arithmetic mean. © 2002 The Wadsworth Group

The Center: Mode The mode is the most frequent value. While there is just one value for the mean and one value for the median, there may be more than one value for the mode of a data set. The mode tends to be less frequently used than the mean or the median. © 2002 The Wadsworth Group

Shape: The “shape” of the data is called its “distribution”? If mean = median = mode, the shape of the distribution is symmetric. If mode < median < mean, the shape of the distribution trails to the right, is positively skewed. If mean < median < mode, the shape of the distribution trails to the left, is negatively skewed. Distributions of various “shapes” have different properties and names such as the “normal” distribution, which is also known as the “bell curve” (among mathematicians it is called the Gaussian Distribution).

The Spread: Range The range is the distance between the smallest and the largest data value in the set. Range = largest value – smallest value Sometimes range is reported as an interval, anchored between the smallest and largest data value, rather than the actual width of that interval. © 2002 The Wadsworth Group

The Spread: Variance Variance is one of the most frequently used measures of spread, for population, for sample, The right side of each equation is often used as a computational shortcut. © 2002 The Wadsworth Group

The Spread: Standard Deviation Since variance is given in squared units, we often find uses for the standard deviation, which is the square root of variance: for a population, for a sample, Be sure you know how to get the values easily from your calculator and computer softwares. © 2002 The Wadsworth Group

Relative Position - Quartiles One of the most frequently used quantiles is the quartile. Quartiles divide the values of a data set into four subsets of equal size, each comprising 25% of the observations. To find the first, second, and third quartiles: 1. Arrange the N data values into an array. 2. First quartile, Q1 = data value at position (N + 1)/4 3. Second quartile, Q2 = data value at position 2(N + 1)/4 4. Third quartile, Q3 = data value at position 3(N + 1)/4 © 2002 The Wadsworth Group