Astro-Particle Physics with Nuclear Track Detectors Eduardo Medinaceli V. INFN, Sez. Bologna, Italy 1.Nuclear Track Detectors (NTD) 2.SLIM experiment (research.

Slides:



Advertisements
Similar presentations
Magnetic Monopole Search at a high altitude with the SLIM (Search for Light Magnetic Monopoles) experiment Eduardo Medinaceli.
Advertisements

Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
Searching for Magnetic Monopoles
The Results of Alpha Magnetic Spectrometer (AMS01) Experiment in Space Behcet Alpat I.N.F.N. Perugia TAUP 2001 Laboratori Nazionali del Gran Sasso, Italy.
Chiral symmetry breaking and structure of quark droplets
Search for nuclearites with the SLIM detector V. Popa, for the SLIM Collaboration From Colliders to Cosmic Rays 7 – 13 September 2005, Prague, Czech Republic.
Search for Strange Quark Matter and Q-Balls with the SLIM Experiment. Zouleikha Sahnoun Astrophys. Dept. CRAAG, Algiers & INFN Bologna, Italy.
Search for spontaneous muon emission from lead nuclei with OPERA bricks M. Giorgini, V. Popa Bologna Group OPERA Collaboration Meeting, LNGS, 19-22/05/2003.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
MAGNETIC MONOPOLES Andrey Shmakov Physics 129 Fall 2010 UC Berkeley.
1 Search for SQM in CRs at Chacaltaya O. Saavedra Dipartimento di Fisica Generale Universita di Torino and INFN sez. di Torino Collaboration (Bolivia,
Nailing Electroweak Physics (aka Higgs Hunting) with the Next Linear Collider Bob Wilson High Energy Physics Group CSU Physics Research Evening November.
Matteo Negrini ISMD-2003, Krakow, September 5-11, 2003 Charmonium Production with Antiproton - Gas Jet Interactions at FNAL Matteo Negrini University of.
Space radiation dosimetry and the fluorescent nuclear track detector Nakahiro Yasuda National Institute of Radiological Sciences.
Counting Cosmic Rays through the passage of matter By Edwin Antillon.
Study of the fragmentation of Carbon ions for medical applications Protons (hadrons in general) especially suitable for deep-sited tumors (brain, neck.
Timing Properties of T0 Detectors At PHOBOS Saba Zuberi, Erik Johnson, Nazim Khan, Frank Wolfs, Wojtek Skulski University of Rochester.
Hybrid emulsion detector for the neutrino factory Giovanni De Lellis University of Naples“Federico II” Recall the physics case The detector technology.
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
2009/11/12KEK Theory Center Cosmophysics Group Workshop High energy resolution GeV gamma-ray detector Neutralino annihilation GeV S.Osone.
Mass Spectrometry Brief introduction (part1) I. Sivacekflerovlab.jinr.ru 2012 Student Practice in JINR Fields of Research 1.oct.2012.
Centre de Toulouse Radiation interaction with matter 1.
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
Point 1 activities and perspectives Marzio Nessi ATLAS plenary 2 nd October 2004 Large Hadron Collider (LHC)
P. Scampoli - 24th ICNTS Bologna, September 4,
Tools for Nuclear & Particle Physics Experimental Background.
Search for Strangelets in Lunar Soil Ke Han / May 26, Alexei Chikanian, Evan Finch, Ke Han, Richard Majka, Jack.
LHC and Search for Higgs Boson Farhang Amiri Physics Department Weber State University Farhang Amiri Physics Department Weber State University.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Work partially supported by under Contract 32/2011.
TAUP Conference, Sendai September The primary spectrum in the transition region between direct and indirect measurements (10 TeV – 10 PeV)
Introduction to CERN David Barney, CERN Introduction to CERN Activities Intro to particle physics Accelerators – the LHC Detectors - CMS.
LOGO B. I. Stepanov Institute of Physics National Academy of Sciences of Belarus.
1 dE/dx  Let’s next turn our attention to how charged particles lose energy in matter  To start with we’ll consider only heavy charged particles like.
8 th Topical Seminar on “Innovative Particle and Radiation Detectors” Siena Oct CALIBRATION AND SEARCH FOR EXOTIC PARTICLES WITH CR39 AND MAKROFOL.
COSMIC RAY PHYSICS WITH AMS Joseph Burger MIT On behalf of the AMS-02 collaboration EPS2003 Aachen Particle Astrophysics July 17, 2003
Nuclearite search with the ANTARES neutrino telescope Vlad Popa, for the ANTARES Collaboration Institute for Space Sciences, Bucharest – Magurele, Romania.
Electrons Electrons lose energy primarily through ionization and radiation Bhabha (e+e-→e+e-) and Moller (e-e-→e-e-) scattering also contribute When the.
A Direct Search for Magnetic Monopoles at H1 HEP03, Aachen, 17-23/7/03 David Milstead The University of Liverpool.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
The Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS) Maria Ionica I.N.F.N. Perugia International School.
Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y.
Introduction to CERN Activities
A. Bâ, S. Balestra, M. Cozzi, G. Giacomelli, R. Giacomelli, M. Giorgini, A. Kumar G. Mandrioli, S. Manzoor, A.R. Margiotta, E. Medinaceli, L. Patrizii,
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
1 Experimental particle physics introduction. 2 What holds the world together?
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research (ICRR) the University of Tokyo KAGRA face to face meeting University of Toyama, Toyama, Japan 3 August.
KM3NeT: Present status and potentiality for the search for exotic particles V. Popa, for the KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest,
The Standard Model of the elementary particles and their interactions
Abstract Several models of elementary particle physics beyond the Standard Model, predict the existence of neutral particles that can decay in jets of.
Methodology to Search for Massive Particle in Cosmic Rays Takeshi SAITO Institute for Advanced Studies, Shinjyuku , Shinjyuku, Tokyo, Japan.
Search for exotics by emulsion J.Kawada & U.Kose (Nagoya)
September th ICNTS Bologna1 Searching for the Magnetic Monopole and Other Highly Ionizing Particles at Accelerators Using NTDs James L. Pinfold University.
Methods of Experimental Particle Physics
Introduction to CERN Activities
Monopoles The Mystery.
Results from OPERA Pablo del Amo Sánchez for the OPERA collaboration
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
of secondary light ion beams
Cosmic-Rays Astrophysics with AMS-02
[24th Bologna (Italy) 04/09/2008]
for the PAMELA collaboration
Searching for Magnetic Monopoles
Neutron Detection with MoNA LISA
Nuclearite search with the ANTARES neutrino telescope
Fragmentation cross sections of Fe26+, Si14+ and C6+ ions of 0
Preliminary results of the CAKE experiment
SUSY SEARCHES WITH ATLAS
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Presentation transcript:

Astro-Particle Physics with Nuclear Track Detectors Eduardo Medinaceli V. INFN, Sez. Bologna, Italy 1.Nuclear Track Detectors (NTD) 2.SLIM experiment (research of “exotic” particles) 3.CAKE experiment (primary cosmic ray composition) High Energy Physics in the LHC era 3° International Workshop Valparaiso - Chile

Astro-particle Physics p + nuclei rad. γ Magnetici Monopoles Strange Quark Matter ? Sun UHE  SN ? WIMPs Introduction ?

Symmetry of Maxwell Equations (cgs units) 1931 Dirac: Quantization of electric charge Proc. R. Soc. London, 133 ( 1931) 60 Dirac relation 2/15 Magnetic Monopoles

Intermediate Mass Magnetic Monopoles (IMM) Introduction SO(10) GeV s SU(4) x SU(2) L x SU(2) R 10 9 GeV s SU(3) C x [SU(2) L x U(1) Y ] EW + … 10 5 ≤ M ≤ GeV β = n g D B β > 0.03 Virtual vector bosons X, Y? Electroweak Unification W, Z Virtual photons and gluons Confinement region Magnetic field of a point MM Radius (m) IMM Energy Losses  β > Ionization (à la Bethe-Bloch) (Ze eq ) 2 = (gβ) <β<10 -3 Drell effect M + He  M + He* Penning effect He*+ CH 4  He + CH 4 + e -  β < Elastic collisions De Rujula CERN-TH 7273/94, E. Huguet & P. Peter hep-ph/ , T.Kephart, Q. Shafi Phys. Lett. B520(2001)313, Wick et al. Astropart. Phys. 18, 663 (2003)

Strange Quark Matter (SQM) Introduction - aggregates of u, d, s ( ~ same number) + electrons - stable for barionic numbers  some hundreds < A < u.m.a. - density ρ SQM  3.5 x g cm -3 ( ρ nuclei  g cm -3 ) - ratio Z/A low De Rujula, Nucl. Phys. A434, 605 (1985)

Nuclear Track Detectors (NTD) CR39® ρ = 1.32 g /cm 3 (C 12 H 18 O 7 ) n MAKROFOL ® ρ = 1.29 g /cm 3 (C 16 H 14 O 3 ) n NTDs 158 A GeV 82+ Pb in CR39 20X Mag. 150X150 μm 2 Reduced etch rate: p = v T /v B Latent Track 100X70 μm 2 Chemical Etch KOH, NaOH in different concentrations

Calibrations In 49+ & Pb A GeV CERN–SPS, Pb target Fe 26+ & Si and 5 A GeV BNL–AGS, CH 2 target 0.41 A GeV Fe 26+ and 0.29 A GeV C 6+ HIMAC detector typeZ/β REL [MeVcm 2 /g] v B [ μm/h] CR ±0.4 strongCR39DOP ±0.3 Makrofol ±0.1 softCR ± 0.02 CR39DOP ± 0.02 p-1 Survived beam Fragments Target Incident ion beam NTD Z/  = 78 Z/  = 82 Z/  = Z/  = Z/  = 46 Z/  = 49 CR39 Makrofol for β > 0.01

SLIM Acceptance -dE/dx Strangelets IMM

The SLIM experiment(Search for Light Magnetic Monopoles) SLIM res atm= 540 g/cm 2 R = 12.5 GV area = 427 m 2 t = 4.22 years 24 X 24 cm stacks 10 5 ≤ M IMM ≤ GeV   > ≤ M SQM ≤ GeV  > 0.001

negative positive neutral C 12 H 18 O 7 (ρ = 1.31 g/cm 3 ) dim = 1450 μm x 1 x 1 cm 2 Φ N ~ 1.8x cm -2 s keV – 20 MeV Zanini et Statistical studies of n indiced background in CR39 SLIM

Area = 427 m 2, t = 4.22 years Φ ≤ 1.3x cm -2 sr -1 s -1, β>0.03 for IMM β>10 -4 for Strangeletes and Nuclearites SLIM results 90% C.L. IMM SQM Rad. Meas. 44 (2009) 889–893 arXiv: [hep-ex]

Si Li-Be-B Sc-Ti-V-Cr C Fe N O Chemical composition of Cosmic Rays Composition of RC

First Ionization Potential (FIP) (~ measurement of the bounding force of an e) Volatility/Refractory (prop. to remain in the gas/solid phase T cond ) Injection Mechanisms ~10 4 °K Composition of CR FIP Vol/Ref 31 Ga, 32 Ge 79 Au Big exposure area Long balloon flight / ISS Requirements

The CAKE experiment (ASI) CAKE - ASI Cosmic Abundances below the Knee Energy prototipe for ULDB h ~ 40 km, residual Atm ~ 3.5 g/cm 2, t ~ 20 h geomagnetic cut-off >9GV (E > 3 GeV/n) Non stabilized “gondolla” CR39 ® CR39 ® Z th > 5 (0.7 mm -1.4 mm) Makrofol Makrofol Z th > 55 (0.25 mm) A = 1 m 2 80 stacks (11.5 X 11.5 cm 2 ) stack mean thickness 2.5 g/cm 2

Automatic measurements valid track candidates background tracks ELBEK - SAMAICA deffectsEOR Low charge TOP BOTTOM

Classification “Signal/background”- FILTERING CAKE Neural Network semi automatic measurement

Tracking

CAKE results 3.5g/cm 2 per 14h 15m 66 (stacks) x 0,072 m 2 ≈ 0.5 m 2 ~ 6000 measured events (passing through 3 layers) Total number of eventsRelative Abundances at the top of the atm CAKE arXiv: v1[astro-ph]

NTD were used by the SLIM experiment in the search of massive particles in the cosmic radiation, obtaining the best upper flux limits for IMM and SQM. NTD were used successfully by the CAKE experiment in the measurement of the abundances of nuclei with 10 ≤ Z ≤ 31, showing good agreement with other experimental data. NTD are cheap and easy to handle detectors that offers good charge resolution and variable charge thresholds. Summary

BACKUP SLIDES

Monopoli Magnetici SO(10) GeV s SU(4) x SU(2) L x SU(2 ) R 10 9 GeV s SU(3) C x [SU(2) L x U(1) Y ] EW + … GUT MM GeV IMM GeV SLIM MACRO Φ < 1.4* cm -2 sr -1 s -1 Dirac 1931: eg = n ħc/2 per n=1 g d = ħc/2e = 68.5e SU(5) SU(3) C x [SU(2) L x U(1) Y ] EW SU(3) C x U(1) EM 10 2 GeV s s GeV Kephard, Shafi. ( M ~ GeV g=2*g d ) Q. Shafi et al. Glashow et. al

Stati coerenti di squarks, sleptons, campi di Higgs + e, ē 10 8 < M Q < GeV, < β < generati nell’universo primordiali candidati di cold dark matter   R Q : dimensioni del Q-ball core; i punti neri indicano elettroni, i cerchi aperti indicano s-electrons. Carichi, SECS Neutri, SENS Q-balls supersimmetrici

CR39® ρ = 1.32 g /cm 3 (C 12 H 18 O 7 ) n A/Z = MAKROFOL ® ρ = 1.29 g /cm 3 (C 16 H 14 O 3 ) n A/Z = A GeV 82+ Pb in CR39 20X Mag. 150X150 μm 2 Chemical etching solutions CR39® 0.1% dioctyl phthalate DOP ρ = 1.32 g /cm 3 (C 12 H 18 O 7 ) n 150X150 μm 2 SLIM Nuclear Track Detectors (NTD) detector typesolution CR398N KOH + 1.5% alcohol 70° C 30h strongCR39 DOP8N KOH + 1.5% alcohol 75° C 30h Makrofol6N KOH + 20% alcohol 75° C 30h softCR396N NaOH + 1% alcohol 70° C 40h CR39 DOP 6N NaOH 70° C 40h The alcohol added in the etching solution improved the detector surface quality

Numero totale di eventi

First Ionization Potential (FIP) (~ misura la forza di legame di un e) Volatility/Refractory (prop. di rimanere nella fase gassosa/condesata T cond ) Meccanismi d’accelerazione ~10 4 °K Composizione RC FIP Vol/Ref 31 Ga, 32 Ge 79 Au

L’angolo limite di rivelazione nei NTDs NTDs

L5 scan Mag: 200 – 400X L1 scan Mag: 0.8X obj – 10X eye piece Scan SLIM

Composizione RC

SLIM Acceptance -dE/dx Strangelets IMM

Background identification REL TOP = 455 MeVg -1 cm -2 REL BOTTOM = 749 MeVg -1 cm -2 CARBON RECOIL SLIM soft etching strong etching