1 External Sorting Chapter 13. 2 Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing.

Slides:



Advertisements
Similar presentations
External sorting R & G – Chapter 13 Brian Cooper Yahoo! Research.
Advertisements

External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
CMU SCS Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications C. Faloutsos – A. Pavlo Lecture#12: External Sorting.
Equality Join R X R.A=S.B S : : Relation R M PagesN Pages Relation S Pr records per page Ps records per page.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 11.
1 External Sorting Chapter Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing.
External Sorting “There it was, hidden in alphabetical order.” Rita Holt R&G Chapter 13.
External Sorting CS634 Lecture 10, Mar 5, 2014 Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Query Evaluation Chapter 11 External Sorting.
1 Overview of Storage and Indexing Chapter 8 (part 1)
FALL 2004CENG 351 Data Management and File Structures1 External Sorting Reference: Chapter 8.
External Sorting R & G Chapter 13 One of the advantages of being
FALL 2006CENG 351 Data Management and File Structures1 External Sorting.
External Sorting R & G Chapter 11 One of the advantages of being disorderly is that one is constantly making exciting discoveries. A. A. Milne.
CS 4432lecture #31 CS4432: Database Systems II Lecture #3 Professor Elke A. Rundensteiner.
Query Processing 1: Joins and Sorting R&G, Chapters 12, 13, 14 Lecture 8 One of the advantages of being disorderly is that one is constantly making exciting.
Query Optimization 3 Cost Estimation R&G, Chapters 12, 13, 14 Lecture 15.
6/27/20151 PSU’s CS External Sorting  Motivation  2-way External Sort: Memory, passes,cost  General External Sort: Memory, passes, cost  Optimizations.
External Sorting 198:541. Why Sort?  A classic problem in computer science!  Data requested in sorted order e.g., find students in increasing gpa order.
1 External Sorting for Query Processing Yanlei Diao UMass Amherst Feb 27, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
External Sorting Chapter 13.. Why Sort? A classic problem in computer science! Data requested in sorted order  e.g., find students in increasing gpa.
Query Processing 2: Sorting & Joins
BTrees & Sorting 11/3. Announcements I hope you had a great Halloween. Regrade requests were due a few minutes ago…
©Silberschatz, Korth and Sudarshan13.1Database System Concepts Chapter 13: Query Processing Overview Measures of Query Cost Selection Operation Sorting.
Sorting.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke 1 External Sorting Chapter 13.
CPSC 404, Laks V.S. Lakshmanan1 External Sorting Chapter 13 (Sec ): Ramakrishnan & Gehrke and Chapter 11 (Sec ): G-M et al. (R2) OR.
CPSC 404, Laks V.S. Lakshmanan1 External Sorting Chapter 13: Ramakrishnan & Gherke and Chapter 2.3: Garcia-Molina et al.
1 External Sorting. 2 Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing gpa order.
1 Database Systems ( 資料庫系統 ) December 7, 2011 Lecture #11.
Chapter 12 Query Processing (1) Yonsei University 2 nd Semester, 2013 Sanghyun Park.
DMBS Internals I. What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the database concurrently.
ZA classic problem in computer science! zData requested in sorted order ye.g., find students in increasing cap order zSorting is used in many applications.
ICOM 6005 – Database Management Systems Design Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department Lecture 13 – Query Evaluation.
B+ Trees: An IO-Aware Index Structure Lecture 13.
Introduction to Database Systems1 External Sorting Query Processing: Topic 0.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapters 13: 13.1—13.5.
CPSC Why do we need Sorting? 2.Complexities of few sorting algorithms ? 3.2-Way Sort 1.2-way external merge sort 2.Cost associated with external.
DMBS Internals I February 24 th, What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the.
DMBS Internals I. What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the database concurrently.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 11.
External Sorting. Why Sort? A classic problem in computer science! Data requested in sorted order –e.g., find students in increasing gpa order Sorting.
External Sorting Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides.
CS 405G: Introduction to Database Systems Instructor: Jinze Liu Fall 2007.
What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the database concurrently and safely. Provide.
1 Lecture 16: Data Storage Wednesday, November 6, 2006.
Database Systems (資料庫系統)
External Sorting Chapter 13
External Sorting Chapter 13 (Sec ): Ramakrishnan & Gehrke and
Database Management Systems (CS 564)
Lecture#12: External Sorting (R&G, Ch13)
External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
External Sorting Chapter 13
Selected Topics: External Sorting, Join Algorithms, …
CS222P: Principles of Data Management UCI, Fall 2018 Notes #09 External Sorting Instructor: Chen Li.
CS222: Principles of Data Management Lecture #10 External Sorting
Chapter 12 Query Processing (1)
General External Merge Sort
External Sorting.
CS222P: Principles of Data Management Lecture #10 External Sorting
CENG 351 Data Management and File Structures
Database Systems (資料庫系統)
External Sorting Chapter 13
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #09 External Sorting Instructor: Chen Li.
External Sorting Dina Said
CSE 190D Database System Implementation
Presentation transcript:

1 External Sorting Chapter 13

2 Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing gpa order  Sorting is first step in bulk loading B+ tree index.  Sorting useful for eliminating duplicate copies in a collection of records (Why?)  Sort-merge join algorithm involves sorting.  Problem: sort 1Gb of data with 1Mb of RAM.  why not virtual memory?

3 Using secondary storage effectively  General Wisdom :  I/O costs dominate  Design algorithms to reduce I/O

4 2-Way Sort: Requires 3 Buffers  Pass 1: Read a page, sort it, write it.  only one buffer page is used  Pass 2, 3, …, etc.:  three buffer pages used. Main memory buffers INPUT 1 INPUT 2 OUTPUT Disk

5 Two-Way External Merge Sort  Costs for pass : 2 * N  # of passes : height of tree  total cost : product of above Input file 1-page runs 2-page runs 4-page runs 8-page runs PASS 0 PASS 1 PASS 2 PASS 3 9 3,4 6,2 9,48,75,63,1 2 3,45,62,64,97,8 1,32 2,3 4,6 4,7 8,9 1,3 5,62 2,3 4,4 6,7 8,9 1,2 3,5 6 1,2 2,3 3,4 4,5 6,6 7,8

6 Two-Way External Merge Sort  Each pass we read + write each page in file.  N pages in file => number of passes  So total cost is:  Idea: Divide and conquer: sort subfiles and merge Input file 1-page runs 2-page runs 4-page runs 8-page runs PASS 0 PASS 1 PASS 2 PASS 3 9 3,4 6,2 9,48,75,63,1 2 3,45,62,64,97,8 1,32 2,3 4,6 4,7 8,9 1,3 5,62 2,3 4,4 6,7 8,9 1,2 3,5 6 1,2 2,3 3,4 4,5 6,6 7,8

7 External Merge Sort  What if we had more buffer pages?  How do we utilize them wisely ? -  Two main ideas !

8 Phase 1 B Main memory buffers INPUT 1 INPUT B Disk INPUT 2... Construct as large as possible starter lists.

9 Phase 2 Compose as many sorted sublists into one long sorted list. B Main memory buffers INPUT 1 INPUT B-1 OUTPUT Disk INPUT 2...

10 General External Merge Sort  To sort a file with N pages using B buffer pages:  Pass 0: use B buffer pages. Produce sorted runs of B pages each.  Pass 1, 2, …, etc.: merge B-1 runs. B Main memory buffers INPUT 1 INPUT B-1 OUTPUT Disk INPUT 2... * How can we utilize more than 3 buffer pages?

11 Cost of External Merge Sort  Number of passes:  Cost = 2N * (# of passes)

12 Example  Buffer : with 5 buffer pages  File to sort : 108 pages  Pass 0: Size of each run? Number of runs?  Pass 1: Size of each run? Number of runs?  Pass 2: ???

13 Example  Buffer : with 5 buffer pages  File to sort : 108 pages  Pass 0: = 22 sorted runs of 5 pages each (last run is only 3 pages)  Pass 1: = 6 sorted runs of 20 pages each (last run is only 8 pages)  Pass 2: 2 sorted runs, 80 pages and 28 pages  Pass 3: Sorted file of 108 pages Total I/O costs: ?

14 Example  Buffer : with 5 buffer pages  File to sort : 108 pages  Pass 0: = 22 sorted runs of 5 pages each (last run is only 3 pages)  Pass 1: = 6 sorted runs of 20 pages each (last run is only 8 pages)  Pass 2: 2 sorted runs, 80 pages and 28 pages  Pass 3: Sorted file of 108 pages Total I/O costs: 2*N * (4 passes)

15 Cost of External Merge Sort  Number of passes:  Cost = 2N * (# of passes)  E.g., with 5 buffer pages, to sort 108 page file:  Pass 0: = 22 sorted runs of 5 pages each (last run is only 3 pages)  Pass 1: = 6 sorted runs of 20 pages each (last run is only 8 pages)  Pass 2: 2 sorted runs, 80 pages and 28 pages  Pass 3: Sorted file of 108 pages

16 Number of Passes of External Sort -gain of utilizing all available buffers - importance of a high fan-in during merging

17 Internal Sort Algorithm  Quicksort is a fast way to sort in memory.  An alternative is “tournament sort” (a.k.a. “heapsort”)  Top: Read in B blocks  Output: move smallest record to output buffer  Read in a new record r  insert r into “heap”  if r not smallest, then GOTO Output  else remove r from “heap”  output “heap” in order; GOTO Top

18 Internal Sort Algorithm CURRENT SET INPUT OUTPUT  1 input, 1 output, B-2 current set  Main idea: repeatedly pick tuple in current set with smallest k value that is still greater than largest k value in output buffer and append it to output buffer  Input & Output? new input page is read in if it is consumed, output is written out when it is full  When terminate the current run? When all the tuples in current set are smaller than the larges tuple in the output buffer.

19 Optimizing External sorting  Cost metric  I/O Only (till now)  CPU is nontrivial, worth reducing  Further optimization for external sorting.  Blocked I/O  Double buffering

20 I/O for External Merge Sort  When the goal is reducing # I/O pages: reduce the passes. … longer runs often means fewer passes! Actually, do I/O a page at a time.  But cost also includes real page read/write time.  In fact, read a block of pages sequentially!  Suggests we should make each buffer (input/output) be a block of pages.  But this will reduce fan-out during merge passes!  In practice, most files still sorted in 2-3 passes.

21 I/O for External Merge sort  Example buffer blocks = b pages set one buffer block for input, one buffer block for output merge |B-b/b| runs in each pass e.g., 10 buffer pages 9 runs at a time with one-page input and output buffer blocks 4 runs at a time with two-page input and output buffer block

22 Number of Passes of Optimized Sort * Block size = 32, initial pass produces runs of size 2B. * Cost = (# 32-page block R/W) * (cost of 32-page block I/O)

23 Double Buffering – Overlap CPU and I/O  To reduce wait time for I/O request to complete, can prefetch into `shadow block’.  Potentially, more passes; in practice, most files still sorted in 2-3 passes. OUTPUT OUTPUT' Disk INPUT 1 INPUT k INPUT 2 INPUT 1' INPUT 2' INPUT k' block size b B main memory buffers, k-way merge

24 Sorting Records!  Sorting has become a blood sport!  Parallel sorting is the name of the game...  Datamation: Sort 1M records of size 100 bytes  Typical DBMS: 15 minutes  World record: 3.5 seconds 12-CPU SGI machine, 96 disks, 2GB of RAM  New benchmarks proposed:  Minute Sort: How many can you sort in 1 minute?  Dollar Sort: How many can you sort for $1.00?

25 Using B+ Trees for Sorting  Scenario: Table to be sorted has B+ tree index on sorting column(s).  Idea: Can retrieve records in order by traversing leaf pages.  Is this a good idea?  Cases to consider:  B+ tree is clustered Good idea!  B+ tree is not clustered Could be a very bad idea!

26 Clustered B+ Tree Used for Sorting  Cost: root to left-most leaf, then retrieve all leaf pages (Alternative 1)  For Alternative 2, additional cost of retrieving data records: each page fetched just once. * Always better than external sorting! (Directs search) Data Records Index Data Entries ("Sequence set")

27 Unclustered B+ Tree Used for Sorting  Alternative (2) for data entries; each data entry contains rid of a data record. In general, one I/O per data record! (Directs search) Data Records Index Data Entries ("Sequence set")

28 External Sorting vs. Unclustered Index * p : # of records per page * B=1,000 and block size=32 for sorting * p=100 is the more realistic value.

29 Summary  External sorting is important; DBMS may dedicate part of buffer pool for sorting!  External merge sort minimizes disk I/O cost:  Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs.  # of runs merged at a time depends on B, and block size.  Larger block size means less I/O cost per page.  Larger block size means smaller # runs merged.  In practice, # of runs rarely more than 2 or 3.

30 Summary, cont.  Choice of internal sort algorithm may matter.  The best sorts are wildly fast:  Despite 40+ years of research, we’re still improving!  Clustered B+ tree is good for sorting; unclustered tree is usually very bad.