The Milagro Gamma-Ray Observatory Milagro is a water Cherenkov extensive air shower (EAS) detector located near Los Alamos, NM at 2630m above sea level,

Slides:



Advertisements
Similar presentations
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Advertisements

OBSERVATIONS OF AGNs USING PACT (Pachmarhi Array of Cherenkov Telescopes) Debanjan Bose (On behalf of PACT collaboration) “The Multi-Messenger Approach.
Web: Contact: HAWC is a collaborative effort between institutions in the United States of America.
Cosmic Rays Basic particle discovery. Cosmic Rays at Earth – Primaries (protons, nuclei) – Secondaries (pions) – Decay products (muons, photons, electrons)
Astronomy 1 – Winter 2011 Lecture 7; January
Gus Sinnis HAWC Review December 2007 Milagro a TeV Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory.
Gus Sinnis Los Alamos National Laboratory EAS Arrays in the GLAST Era.
Gamma-Ray Astronomy Dana Boltuch Ph. D
The Milagro Gamma-Ray Observatory By Timothy Willett CROP: Roncalli Division.
HAWC Gus Sinnis VHE Workshop UCLA October, 2005 HAWC: A Next Generation Wide-Field VHE Gamma-Ray Telescope.
A Visit to Ghost Ranch Jim Linnemann Michigan State University & Los Alamos National Laboratory June 18, 2003.
Active Galactic Nuclei Thomas Schlenker University of Washington Department of Physics PHYS 496 -What is an AGN? -What kinds of AGN’s are out there? -Unified.
HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Julie McEnery GLAST Science Lunch Milagro: A Wide Field of View Gamma-Ray Telescope Julie McEnery.
The ANTARES experiment is currently the largest underwater neutrino telescope and is taking high quality data since Sea water is used as the detection.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Sayfa 1 EP228 Particle Physics Department of Engineering Physics University of Gaziantep Dec 2014 Topic 5 Cosmic Connection Course web page
High-Energy Astrophysics
Properties of Light.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Gus Sinnis RICAP, Rome June 2007 High Altitude Water Cherenkov Telescope  Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration.
Milagro Gus Sinnis Milagro NSF Review July 18-19, 2005 Milagro: A Synoptic VHE Gamma-Ray Telescope Gus Sinnis Los Alamos National Laboratory.
Survey of the Universe Tom Burbine
A Cherenkov Radiation Detector for the Auger Project Katarzyna Oldak Research Adviser: Corbin Covault Department of Physics The purpose of this project.
4. Einstein Angle and Magnification The angular deflection for a relativistic neutrino with mass m ʋ that passes by a compact lens of mass M with impact.
Moriond 2001Jordan GoodmanMilagro Collaboration The Milagro Gamma Ray Observatory The Physics of Milagro Milagrito –Mrk 501 –GRB a Milagro –Description.
Jacques Paul Soft Gamma-Ray Astronomy 23 January 2001 Rencontres de Moriond Les Arcs Expected Impact on VHE Phenomena Panorama in the Coming Years INTEGRAL.
Project Gamma By Wylie Ballinger and Sam Russell Visit For 100’s of free powerpoints.
Quasars Chapter 17. Topics Quasars –characteristics –what are they? –what is their energy source? –where are they? –how old are they? –interactions of.
Space-based Gamma-ray Astronomy Liz Hays (NASA Goddard Space Flight Center)
ASTR 113 – 003 Spring 2006 Lecture 11 April 12, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-29) Introduction To Modern Astronomy.
High-Energy Ground Level Events Measured with Neutron Monitors and the Milagro Instrument James M. Ryan University of New Hampshire and the Milagro Collaboration.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
The ANTARES neutrino telescope is located on the bottom of the Mediterranean Sea, 40 km off the French coast. The detector is installed at a depth of 2.5.
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
24.1 The Study of Light Electromagnetic Radiation
Cosmic rays at sea level. There is in nearby interstellar space a flux of particles—mostly protons and atomic nuclei— travelling at almost the speed of.
APRIM Chiang Mai July 28, 2011 Heliospheric Physics with IceTop Paul Evenson University of Delaware Department of Physics and Astronomy.
Earth & Space Science March 2015
HAWC Science  Survey of 2  sr (half the sky) up to 100 TeV energies Probe knee in cosmic ray spectrum Identify sources of Galactic cosmic rays  Extended.
1st page of proposal with 2 pictures and institution list 1.
PHY418 Particle Astrophysics
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
Quasars, Active Galaxies, and Gamma-Ray Bursters Chapter Twenty-Seven.
Where do ultra-high energy cosmic rays come from? No one knows the origin of ultra-high energy cosmic rays. The majority of low-energy cosmic ray particles.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
Aous Abdo Ground-based Gamma-ray Astronomy: Towards the Future. Santa Fe, NM May 11–12, 2006 Detection of Tev  -rays from the Cygnus Region with Milagro.
Introduction Active galactic nuclei (AGN) are among the most interesting sources of gamma-rays. At the highest energies, blazars are the most luminous.
Detecting Air Showers on the Ground
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
The Large High Altitude Air Shower Observatory LHAASO.
Gus Sinnis RICAP, Rome June 2007 The Milagro Observatory: Recent Results & Future Plans Gus Sinnis Los Alamos National Laboratory for the Milagro Collaboration.
On behalf of the ARGO-YBJ collaboration
The Antares Neutrino Telescope
STARS AND GALAXIES.
CALET-CALによる ガンマ線観測初期解析
6.3 Telescopes and the Atmosphere
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Cosmic Ray Showers Cosmic ray activity Figure 3:
Discussion slide- info from hq. nasa
Copy week schedule into your agenda and answer the Question of the Day
Presentation transcript:

The Milagro Gamma-Ray Observatory Milagro is a water Cherenkov extensive air shower (EAS) detector located near Los Alamos, NM at 2630m above sea level, consisting of a ~5,000 m 2 central (pond) detector surrounded by an array of 175 instrumented water tanks, (outriggers) that span an area of roughly 40,000 m 2. The Milagro detector has 723 photomultiplier tubes (PMTs) submerged in a 24 million liter water reservoir. The PMTs are arranged in two layers, each on a 2.8 x 2.8 m grid. The top layer of 450 PMTs (under 1.4 m of water) is used primarily to reconstruct the direction of the air shower. By measuring the relative arrival time of the air shower across the array, the direction of the primary cosmic ray can be reconstructed with an accuracy of roughly 0.75 o.The bottom layer of 273 PMTs(under 6 m of water) is used primarily to discriminate between gamma-ray Initiated air shower and hadronic air showers. The sides of the reservoir are sloped (2:1) so that the area of the bottom of the reservoir is smaller than the top, leading to the smaller number of PMTs in the bottom layer. The Milagro pond with the cover inflated for servicing. Arial view of the Milagro detector. The Shadow of the Moon as observed by Milagro. The shadow of the Moon in cosmic rays can be used to determine the performance characteristics of Milagro. At TeV energies the Moon’s shadow is offset from the actual position of the Moon because the cosmic rays are bent in the earth’s magnetic field. From the position and shape of the observed shadow one can determine the angular resolution of the detector and the absolute energy response of the detector. Milagro, the Spanish word for miracle, is a new type of astronomical telescope. Like conventional telescopes, Milagro is sensitive to light but the similarities end there. Whereas "normal" astronomical telescopes view the Universe in visible light, Milagro "sees" the Universe at very high energies. The "light" that Milagro sees is in the TeV Range. What is Milagro? Why Milagro? When one views the heavens in the TeV range the picture is quite different from what we see when we look up at the night sky. The number of objects we see are much fewer and much more "extreme". We see super massive black holes and neutron stars. Some of these sources are known to be highly variable, flaring on timescale of minutes to days. In addition we hope to discover new sources of TeV photons, possibly observe TeV emission from Gamma-Ray Bursts, discover primordial black holes, or discover completely new phenomena. Until the advent of Milagro there was no instrument capable of continuously monitoring the entire overhead sky in the TeV energy regime. The existing instruments had to be pointed at small regions of the sky (usually known sources) and could only look at a source during the time of year it was overhead at night. Even then they could only look at the source if the weather was good and the moon was set. Milagro is ideally suited to monitor the variable TeV Universe and discover new sources of TeV gamma rays. Cosmic Rays and Extensive Air Showers The Earth is immersed in a "sea" of high-energy nuclei known as cosmic rays. Cosmic rays are composed of all nuclei, from the simple hydrogen nucleus (a proton) to the iron nucleus and beyond (transuranic elements have been observed in cosmic rays). The energy spectrum of cosmic rays has been measured up to 10 9 TeV. When a high-energy cosmic ray enters the atmosphere it loses its energy via interactions with the nuclei that make up the air. At high energies these interactions create particles. These new particles go on to create more particles, etc. This multiplication process is known as a particle cascade. This process continues until the average energy per particle drops below about 80 MeV. At this point the interactions lead to the absorption of particles and the cascade begins to die. This altitude is known as shower maximum. The particle cascade looks like a pancake of relativistic particles traveling through the atmosphere at the speed of light. Though the number of particles in the pancake may be decreasing, the size of the pancake always grows as the interactions cause the particles to diffuse away from each other. When the pancake reaches the ground it is roughly 100 meters across and 1-2 meters thick. If the primary cosmic ray was a photon the pancake will contain electrons, positrons, and gamma rays. If the primary cosmic ray was a nucleus the pancake will also contain muons, neutrinos, and hadrons (protons, neutrons, and pions). The number of particles left in the pancake depends upon the energy of the primary cosmic ray, the observation altitude, and fluctuations in the development of the shower. Shadow of the Moon AGN Active galaxies emit radiation over the entire electromagnetic spectrum from radio waves to TeV gamma rays. Thermal emission emanates from the accretion disk (infrared to X-rays) and the torus (infrared). Non-thermal emission (radio and gamma rays) comes from the jets. One of the more exciting discoveries of the 1990s has been the observation of TeV emission from several AGNs. TeV emission has been observed from Mrk 421, Mrk 501, and 1ES , 1ES Mrk 501 and 1ES are the first gamma- ray sources discovered by ground-based instruments. Milagro data was used to study Mrk 421 while it was flaring during the period of January to April of 2001 and again in November of During the 2001 period we observed a 4.7  excess and during the 2002 flare a 3  excess. Mrk 421 during the 2001 flare. The Crab Nebula The Crab nebula was the first source convincingly detected in TeV gamma rays. Since the original detection in 1989 the Crab has become the standard candle of TeV astronomy. The luminosity of the Crab is constant (within the accuracy of the measurements made to date) at 2.68(±0.42 stat ±1.4 sys )x10 -7 (E/1TeV) m -2 s -1 TeV -1. As a standard candle it is useful for cross calibrating the sensitivity of different instruments. From the shadow of the Moon and Monte Carlo simulation of the detector the angular resolution of Milagro is 0.8 degrees. The square angular bin that maximizes the significance of a signal has a width 2.8 times the angular resolution of the detector. Therefore an angular bin of width 2.1 degrees is used in this analysis. Data taken in the Crab Nebula region with 6  in the position of the Crab. In a manner identical to that used to analyze data from the region of the Crab nebula, the entire sky is searched for excesses over the background cosmic rays using data from Dec. 15, 2000 to Dec. 15, The sky is binned into 0.1x0.1 degree bins and the expected background and actual number of events detected in each bin is determined. These small bins are then summed into larger bins, commensurate with the angular resolution of Milagro. The resulting sky map is shown in the Figure. The circles are drawn around 26 active galaxies identified in Costamante and Ghisellini 2002 as likely sources of TeV gamma rays, including the five, which have all been observed at TeV wavelengths by other observatories: the Crab nebula, Mrk 421, Mrk 501, 1ES , and 1ES The brightest point in the TeV sky over this time period was Mrk 421. Most of the observed signal in this data set came from an outburst that began in December of 2000 and lasted for several months. The next brightest point in the sky is not associated with any of the drawn circles and is to the northwest of the Crab. Map of the Northern sky in TeV gamma rays. The scale is the significance of each point in the sky. The circles mark the locations of AGN and known TeV sources. Mrk 421 is the brightest object in the sky over this data set. All-Sky Survey Other topics that we are currently studying include: the study of Gamma Ray Bursts; Solar physics; and Dark Matter. The Milagro collaboration consists of more than ten institutions. To date more than ten Ph.D. theses have been completed. James Linnemann and Aous Abdo Department of Physics and Astronomy, Michigan State University Bottom-layer tubes Top-layer tubes The Galactic Plane Diffuse emission from the galactic plane is the dominant source in the MeV gamma ray sky. Milagro detected, for the first time, the galactic plane in the TeV range. The emission seems to be concentrated in the Cygnus region